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a b s t r a c t

Increasing the accuracy of mechanical fault detection has the potential to improve system
safety and economic performance by minimizing scheduled maintenance and the probabil-
ity of unexpected system failure. Advances in computational performance have enabled the
application of machine learning algorithms across numerous applications including condi-
tion monitoring and failure detection. Past applications of machine learning to physical
failure have relied explicitly on historical data, which limits the feasibility of this approach
to in-service components with extended service histories. Furthermore, recorded failure
data is often only valid for the specific circumstances and components for which it was col-
lected. This work directly addresses these challenges for roller bearings with race faults by
generating training data using information gained from high resolution simulations of
roller bearing dynamics, which is used to train machine learning algorithms that are then
validated against four experimental datasets. Several different machine learning method-
ologies are compared starting from well-established statistical feature-based methods to
convolutional neural networks, and a novel application of dynamic time warping (DTW)
to bearing fault classification is proposed as a robust, parameter free method for race fault
detection.

� 2017 Published by Elsevier Ltd.

1. Introduction

Rotating machines are ubiquitous in power production and transportation, among countless other applications. Down-
time caused by failures of components such as bearing or gear faults directly reflects on the economic viability of large sys-
tems such as wind turbines [1] and industrial machinery [2]. Early warning of faults leading to probable failures can mitigate
such risks as well as improve safety. The fatigue lives of common components in rotating systems can be described using
widely accepted methods e.g. ISO standards; however, the lifetime of an individual component is inherently stochastic
because of the nature of material variability, manufacturing defects, and loading regimes unique to each component. There-
fore, lifetime predictions of these components are limited to probability distributions [3,4] that evolve differently for each
physical realization of a component. Novel methods such as digital twins [5] aim to reduce this variability by explicitly
accounting for the specific loading history on a structure. While this may become effective for larger structures such as air-
craft, whose lifetimes are limited to tens of thousands of cycles between maintenance intervals, these methods are imprac-
tical for rotating machines with lifetimes from millions to billions of cycles and an early detection strategy is more feasible
than a prediction strategy.
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Roller bearing failures constitute the majority cause of failures for industrial electric motors [6] and wind turbine gear-
boxes [7]; therefore, the early detection of their associated faults has the potential to significantly decrease unplanned down-
time. The spatially constrained contact between the rollers and races combined with the time-varying nature of bearing
loading drives fatigue damage. Such faults arise on the inner/outer races or roller elements when imperfections on the mate-
rial surface propagate to form cracks. When these cracks merge, material is lost and pits are formed. This damage process is
inherently multi-scale in nature, highly dependent on local material properties and structure, and influenced by multiple
stochastic processes. While the microscopic spalling process is relatively well-understood [8], predicting the remaining time
until spall formation requires detailed knowledge of the material microstructure and loading conditions; therefore, effort
may be better spent on defect detection (and remaining useful life prediction) rather than predicting the formation of such
faults. Rather than relying on recorded acceleration signals from defective bearings, physics-based modeling can provide
insight into the vibration response of a faulted bearing. The simplest model for the excitation of a damaged bearing is a Dirac
delta pulse train with a period associated to that of the defect as proposed by McFadden and Smith [9]. The physical fidelity
of the model was improved with pulse modulation by the direction relative to the radial load on the bearing, and the bearing
vibration response was assumed to be an under-damped oscillation. Following models proposed improvements such as
waviness in the bearing race surfaces [10], introducing random fluctuations about the expected defect period [11], elastohy-
drodynamic film effects [12], and bearing race flexibility at higher modes and centrifugal load effects [13]. Finite element
simulations have also been used to investigate the interactions between a roller element and a race defect [14,15].

Bearing fault detection is most often performed using linear acceleration or acoustic emission signals, and force sensors
have been also shown to be effective [16,17]. Motor current signatures are also a proposed method for bearing fault detection
[18–20] as bearing faults are a common cause for motor failure. Time-series data can be used to produce features that can
differentiate between nominal and faulted bearings with measures such as root mean square (RMS), kurtosis, or skewness.
Preprocessing with methods such as bandpassing, calculation of the envelope signal [21], minimum entropy deconvolution
[22,17,23], and cepstral methods [17,23] have also been proposed. Frequency domain analysis is a more natural approach
because of the periodic nature of rotating machines, and the fact that each bearing fault type (inner/outer race, roller ele-
ment) has a characteristic frequency (assuming no slipping between the components). The power in the bearing vibration
signal around these frequencies can be used to create features, in addition to other typical features such as spectral kurtosis.
However, Fourier transform methods are inherently limited to steady state operation and are not well-suited to non-
stationary operating conditions without additional processing. Modern time-frequency domain methods have been devel-
oped to address this challenge. These methods include the Hilbert-Huang transform [24,25], and discrete [26,27] and con-
tinuous [28] wavelet transforms (DWT/CWT). These techniques decompose the signal into a set of signals based on the
frequency content. These transforms cannot be performed in closed form in general and the precise manifestation of a bear-
ing fault in a signal processed with these transforms is difficult to predict, and therefore these methods are favored for
numerical rather than analytical studies. Apart from transform methods, angle synchronous averaging (ASA) is a commonly
used method to emphasize bearing defect signals and reduce noise under stationary and non-stationary regimes [29–33].
From the shaft speed, one can segment a time-series vibration signal into a series of intervals during which the bearing
rotates over the angular defect period. Averaging the envelope signals over several of these intervals will isolate a response
occurring at the averaging period length while reducing noise. This analysis method is resistant to varying shaft speeds and it
includes the bearing geometry such that angle synchronous averages between different bearing geometries can be com-
pared. These analysis techniques enable one to extract quantitative measures of the bearing vibrational signal characteris-
tics; however, diagnosing a bearing fault using these measures, or combinations of them, presents a significant challenge to
which machine learning algorithms have proven effective.

Numerous machine learning algorithms have been applied successfully in mechanical engineering applications and more
specifically in the field of fault detection, condition monitoring, and prognostics. Contemporary condition monitoring meth-
ods using machine learning have required either commissioning experimental setups running under accelerated failure con-
ditions until a fault is observed andmeasured, or the collection of in-service data (e.g. SCADA) [34] with which to train. At the
system level, wind turbine performance and faults (for several applications such as power production prediction [35], pitch
[36] and bearings faults [37]) have been heavily analyzed because production wind turbine units have integrated SCADA
capabilities and years of data from a large number of turbines has been recorded. Within the domain of bearing diagnostics,
experimental data-driven machine learning uses features such as time-series RMS, standard deviation, crest factor [38], and
wavelet variance [39] among numerous other statistical measures. Combining all of the aforementioned and additional anal-
ysis methods, Rauber et al. [40] created a ‘‘feature pool” including time-series as well as frequency domain statistics and the
energies of CWT decompositions to successfully classify bearing faults with several different classifiers. More recently, one-
dimensional convolutional neural networks applied to the bearing acceleration frequency spectrum have been proposed as a
more effective method of bearing fault detections than statistical feature analysis with the additional benefit of removing the
need for expert knowledge associated with feature extraction [41]. This method shows promise, but in its proposed form is
limited to stationary operating regimes as the input to the convolutional neural network is the power spectrum, which is
inherently dependent on the operating speed and bearing configuration. In general, data-driven approaches are limited
by the requirement of in-service data and there is little reason to expect that a classifier trained in one configuration would
be applicable to a different bearing in a different application. Rather than relying on in-service data to train algorithms,
simulation-driven machine learning overcomes this barrier by creating training data that can capture a wide range of oper-
ating conditions that can be later combined with in-service fault data applicable to its unique operating conditions as it
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