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Abstract

This paper characterizes one penalty finite element method for the incompressible MHD equations. The method is an interesting
combination of the classic iterative schemes (Stokes, Newton and Oseen iterations) with two different finite element pairs
P1b–P1–P1b and P1–P0–P1. Moreover, the rigorous analysis of stability and error estimate for the proposed methods are given.
Finally, the applicability and effectiveness of the presented schemes are illustrated in several numerical experiments.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetohydrodynamics (MHD) mainly describe the theory of macroscopic interaction of electrically conduction
fluid and electromagnetic fields. Many important MHD flows involve a viscous, incompressible, electrically
conducting fluid that interacts with an electromagnetic field. And these MHD flows are governed by the Navier–Stokes
equations and coupled with the pre-Maxwell equations. The resulting system of equations often requires an unrealistic
amount of computing power and storage to properly resolve the flow details. The detailed physical background and
fundamental theory of the MHD flow can be found in [1,2].

In this paper, we consider the stationary incompressible MHD model as follows:
−R−1

e ∆u + (u · ∇)u + ∇ p − SccurlB × B = f in Ω,

divu = 0 in Ω,

Sc R−1
m curl(curlB) − Sccurl(u × B) = g in Ω,

divB = 0 in Ω,

(1)
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with the homogeneous boundary conditions:
u|∂Ω = 0, (no-slip condition),

B · n|∂Ω = 0, n × curlB|∂Ω = 0, (perfectly wall),
(2)

where Ω ⊂ Rd , d = 2 or 3. Here, u denotes the velocity field, B the magnetic field, f and g the external force terms,
p the pressure, Re the hydrodynamic Reynolds number, Rm the magnetic Reynolds number, Sc the coupling number,
and n is the outer unit normal of ∂Ω . Correspondingly, the functions u, B, f and g can be described by:

u = (u1(x), u2(x), 0), B = (B1(x), B2(x), 0),

f = ( f1(x), f2(x), 0), g = (g1(x), g2(x), 0),

for d = 2, and

u = (u1(x), u2(x), u3(x)), B = (B1(x), B2(x), B3(x)),

f = ( f1(x), f2(x), f3(x)), g = (g1(x), g2(x), g3(x)),

for d = 3.
According to our own survey of the literature, the mathematical research for MHD equations can be traced back

to [3] by M. Sermange et al. Recently, there are many research devoted to the theoretical study of the MHD equations,
refer [2,4–6] and their references. Meanwhile, numerical investigation for MHD equations thrives in the recent years.
M. Gunzburger et al. studied the standard Galerkin finite element discretization for the stationary MHD equations [1].
Then, J. Gerbeau et al. presented some mathematical theories and numerical methods for the steady MHD equations
in [7]. For more extensive investigation of the steady MHD equations, please see [8–12] and their references.

However, it is still a challenge to solve this system. It is well known that the stationary MHD equations (1)–(2) are
a strong coupled nonlinear system of a viscous, incompressible, electrically conducting fluid and an external magnetic
field. Specifically, Eqs. (1)–(2) contain three nonlinear terms (u · ∇)u, curlB × B and curl(u × B) and velocity u,
pressure p and B are coupled together. Thus, it is very difficult to handle the large nonlinear system. Hence, great
attentions have been paid on iterative method in recent years. Three classical iterative methods (Stokes, Newton and
Oseen iterative methods) are considered for the stationary Navier–Stokes equations by He [13], Xu and He [5]. Then,
the iterative methods in finite element approximation for the incompressible MHD equations are investigated and
analyzed in [14] and [15].

Furthermore, velocity u and pressure p in (1) are coupled together by the incompressibility constraint “divu = 0”,
which makes the system difficult to solve numerically. One effective way to overcome this difficulty is to relax the
incompressibility constraint in an approximate way, resulting in a class of pseudo-compressibility methods, among
which are the penalty method, the artificial compressibility method, the pressure stabilization method and the projec-
tion method [16–19].

The penalty method applied to (1) is to approximate the solution (u, p, B) by (uϵ, pϵ, Bϵ) satisfying the following
stationary MHD equations:

−R−1
e ∆uϵ + (uϵ · ∇)uϵ − SccurlBϵ × Bϵ + ∇ pϵ = f in Ω,

divuϵ +
ϵ

νe
pϵ = 0 in Ω,

Sc R−1
m curl(curlBϵ) − Sccurl(uϵ × Bϵ) = g in Ω,

divBϵ = 0 in Ω,

(3)

and with the homogeneous boundary conditions:
uϵ |∂Ω = 0, (no-slip condition),

Bϵ · n|∂Ω = 0, n × curlBϵ |∂Ω = 0, (perfectly wall),
(4)

where 0 < ϵ < 1 is a penalty parameter and νe = 1/Re. It is clear from equation divuϵ +
ϵ
ν

pϵ = 0 that pϵ in (3) can
be removed to obtain a penalty system of (uϵ, Bϵ) only. Then, it is much easier to solve than the original Eqs. (1). For
further details of the penalty ideas, please refer to [20]. Note that the penalty method is a decoupled way to solve the
MHD problem by the equations only contains (u, B) or p to numerically solve the original equations directly, and this
idea has been widely used in many areas of computational fluid dynamics (for instance [19–23] and their references).
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