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a b s t r a c t

We consider the matrix completion problem that aims to construct a low rank matrix X
that approximates a given large matrix Y from partially known sample data in Y . In this
paper we introduce an efficient greedy algorithm for such matrix completions. The greedy
algorithm generalizes the orthogonal rank-one matrix pursuit method (OR1MP) by creat-
ing s P 1 candidates per iteration by low-rank matrix approximation. Due to selecting
s P 1 candidates in each iteration step, our approach uses fewer iterations than OR1MP
to achieve the same results. Our algorithm is a randomized low-rank approximation
method which makes it computationally inexpensive. The algorithm comes in two forms,
the standard one which uses the Lanzcos algorithm to find partial SVDs, and another that
uses a randomized approach for this part of its work. The storage complexity of this algo-
rithm can be reduced by using an weight updating rule as an economic version algorithm.
We prove that all our algorithms are linearly convergent. Numerical experiments on image
reconstruction and recommendation problems are included that illustrate the accuracy
and efficiency of our algorithms.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Low-rank matrix completions have a wide range of applications, including recommender systems [10], quantum state
tomography [1,6], linear system identification and control [13], and angle estimation in antenna arrays [18], for example.
Motivated by applications, low rank matrix completions have recently gained increased attention. Our basic matrix comple-
tion model involves a large data matrix Ym;n, a set X of row and column indices fðOr ;OcÞgwith 1 6 Or 6 m and 1 6 Oc 6 n and
jXj � m � n that indicates the row and column indices of a subset of entries of Y. With this setup we try to find a low rank
completion matrix Xm;n that has the same entries as Y in the positions of X and arbitrary entries in its complementary posi-
tions chosen appropriately so that X has the minimal possible rank. This problem can be formalized as follows.

min
X2Rm�n

rankðXÞ such that PXðXÞ ¼ PXðYÞ; ð1:1Þ

where X denotes the set of all index pairs of chosen Y entries that X shares with Y. Here PX is the orthogonal projector onto
the span of matrices with zeros at all positions not in X. The purpose of this matrix completion from given Y and X is to
construct a low rank matrix X from the partially observed matrix PXðYÞ of Y. By design this matrix completion relies on fewer
than the m � n measurements in Y and can be used reconstruct the signal in Y accurately enough in much simpler form,
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bringing significant benefits for many applications. It is well known that the matrix rank function f ðXÞ ¼ rankðXÞ is a not con-
vex and therefore rank optimization is difficult in general. The nuclear norm has been advocated as a convex surrogate func-
tion for rank, see [13,3]. The nuclear norm jjXjj� of a matrix X is defined as the sum of its singular values. And a relaxed convex
formulation for problem (1.1) in terms of the nuclear norm is as follows.

min
X2Rm�n

jjXjj� such that PXðXÞ ¼ PXðYÞ:

This constrained nuclear norm minimization problem has been well studied. See for example the seminal work of [13,3].
There are several convex relaxation-based algorithms to solve this problem and variants: singular value projection (SVP)
[9], singular value thresholding (SVT) [2], Jaggi’s fast algorithm for trace norm constraint (JS) [8], the spectral regularization
algorithm (SoftImpute) [12], low rank matrix fitting (LMaFit) [17], a boosting-type accelerated matrix-norm penalized solver
(Boost) [19]. Unfortunately the high computational complexity of these convexity based methods make them impractical for
many application.

Another competitive algorithm is based on the greedy strategy, including atomic decomposition for minimum rank
approximation (ADMiRA) [11], the greedy efficient component optimization (GECO) [14], and orthogonal rank-one matrix
pursuit (OR1MP) [16]. These approaches have received significant attention due to their low complexity and simple
implementation.

Our work builds on the OR1MP algorithm [16], which is in turn based on the OMP algorithm [15]. We generalize OR1MP
in the low-rank approximation pursuit algorithm (LRAP) that solves the matrix completion problem (1.1). Differing from the
OR1MP algorithm, the LRAP algorithm selects multi-candidates and adds them to the basis set by the best rank-s approxi-
mations in each iteration step. It is the procedure of selecting multi-candidates with OR1MP and further decreasing the com-
putational complexity. Note that for s ¼ 1, LRAP is identical to OR1MP. In the standard LRAP algorithm we fully update the
weights (or the coefficients) for all rank-1 matrices in the current basis set after each iteration. However, the full weight
updating of the standard algorithm involves all rank-1 matrices in the current basis set, i.e., k � s � jXj elements after the
kth iteration. To overcome this drawback, we also adopt an economic weight updating rule in the more economical version
ELRAP of our algorithm. ELRAP reduces both time and storage needs for LRAP. Finally we prove that our both algorithms
achieve linear convergence.

The main contributions of our paper are:

� We propose a computationally more efficient greedy algorithm for the matrix completion (1.1), which extends the
orthogonal rank-one matrix pursuit from selecting just one candidate per iteration step to multiple candidates that are
added to the basis set. We further reduce the storage complexity of our basic algorithm by using an economic weight
updating rule. We show that both versions of our algorithm achieve linear convergence.
� We count the number of floating-point operations of our LRAP algorithm and of its more economic version ELRAP in order
to show that our algorithms scale well to large problems.
� To verify the efficiency of our algorithm, we compare our LRAP and ELRAP algorithms with three state-of-the-art matrix
completion algorithms on large-scale data sets, such as Jester1 and MovieLens.2

This paper is organized as follows: Additional notations are introduced below. Then we present our the LRAP algorithm
and its economic ELRAP version in Section 2. In Section 3, we extend our algorithms to deal with the matrix sensing problem
and prove the algorithms’ linear convergence rate. Empirical numerical test evaluations are presented in Section 4 that verify
the efficiency of our algorithms.

By vecðXÞ we denote the column vector derived from a matrix X by concatenating all its columns in one column. We
define x

:
as the vector obtained by concatenating all entries with row and column indices in X for X, i.e., the column vector

vecðPXðXÞÞ. For two compatibly sized matrices X and Y, their Frobenius inner product and their matrix norm are defined as
hY ;Xi ¼ traceðXTYÞ and kXk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffihX;Xip

, respectively. We denote PXðXÞ by XX and define hX;YiX ¼ hXX;XXi and
kXkX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihX;XiX
p

.

2. Low-rank approximation pursuit and an economic version

The singular value decomposition (SVD) of a matrix X 2 Rm�n factors it as URVT , where Um;m and Vn;n are unitary matrix,
and R 2 Rm�n is a rectangular diagonal matrix with non-negative decreasing diagonal entries. Since U and V both have mutu-
ally orthonormal columns, X ¼ URVT can be rewritten as X ¼ MðhÞ ¼Pi¼IhiMi, where hi are diagonal entries of R, the vector h
is the vector of hi, and each Mi is an m� n rank-one matrix generated by the rows of U and V. Therefore the original low rank
approximation problem (1.1) can be rewritten as:

min
h
khk0 such that PXðMðhÞÞ ¼ PXðYÞ;

1 http://eigentaste.berkeley.edu/dataset/.
2 https://grouplens.org/datasets/movielens/.
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