
Agglomerative concentric hypersphere clustering applied to
structural damage detection

Moisés Silva a,⇑, Adam Santos a, Reginaldo Santos a, Eloi Figueiredo b,c, Claudomiro Sales a,
João C.W.A. Costa a

aApplied Electromagnetism Laboratory, Universidade Federal do Pará, R. Augusto Corrêa, Guamá 01, Belém, 66075-110 Pará, Brazil
b Faculty of Engineering, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal
cCONSTRUCT, Institute of R&D in Structures and Construction, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

a r t i c l e i n f o

Article history:
Received 31 August 2016
Received in revised form 15 January 2017
Accepted 18 January 2017

Keywords:
Agglomerative concentric hypersphere
Clustering
Damage detection
Structural health monitoring
Environmental conditions
Operational conditions

a b s t r a c t

The present paper proposes a novel cluster-based method, named as agglomerative con-
centric hypersphere (ACH), to detect structural damage in engineering structures.
Continuous structural monitoring systems often require unsupervised approaches to auto-
matically infer the health condition of a structure. However, when a structure is under
linear and nonlinear effects caused by environmental and operational variability, data nor-
malization procedures are also required to overcome these effects. The proposed approach
aims, through a straightforward clustering procedure, to discover automatically the
optimal number of clusters, representing the main state conditions of a structural system.
Three initialization procedures are introduced to evaluate the impact of deterministic and
stochastic initializations on the performance of this approach. The ACH is compared to
state-of-the-art approaches, based on Gaussian mixture models and Mahalanobis squared
distance, on standard data sets from a post-tensioned bridge located in Switzerland: the
Z-24 Bridge. The proposed approach demonstrates more efficiency in modeling the normal
condition of the structure and its corresponding main clusters. Furthermore, it reveals a
better classification performance than the alternative ones in terms of false-positive and
false-negative indications of damage, demonstrating a promising applicability in real-
world structural health monitoring scenarios.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, the continuous structural condition assessment has demanded strong research efforts to support
the management of structures during their lifetime. In particular, for the civil engineering infrastructure [1], the bridge man-
agement systems (BMSs) and structural health monitoring (SHM) have been used to cover the most relevant activities con-
cerning the bridge management process. The BMS is a visual inspection-based decision-support tool developed to analyze
engineering and economic factors and to assist the authorities in determining how and when to make decisions regarding
maintenance, repair and rehabilitation of structures [2,3]. On the other hand, the SHM traditionally refers to the process
of implementing monitoring systems to measure structural responses in real-time and to identify anomalies and/or damage
at early stages [4].
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Even with the inherent limitation imposed by the visual inspections, the BMS has already been accepted by structural
managers around the world [5–7]. At the same time, SHM is becoming increasingly attractive due to its potential ability
to detect damage, contributing positively to life-safety and economical issues [8]. It can be also integrated into the BMS
in a systematic way [9]. Posed in the context of a statistical pattern recognition (SPR) paradigm, the SHM is described as
a four-phase process [10]: (1) operational evaluation, (2) data acquisition, (3) feature extraction, and (4) statistical modeling
for feature classification.

The feature extraction phase estimates damage-sensitive features, from the raw data, which are potentially correlated to
the level of damage present in the monitored structure. Nevertheless, when one deals with real-world monitoring scenarios,
the influence of operational and environmental effects may cause changes in the magnitude of features as well as alter their
correlation with the level of damage. Generally, the more sensitive a feature is to damage, the more sensitive it is to changes
in the operational and environmental conditions (e.g. temperature, wind speed and traffic loading) [11]. Therefore, robust
feature extraction methods and data normalization procedures are required to overcome this problem. The data normaliza-
tion is the process of separating changes in damage-sensitive features caused by damage from those caused by varying
operational and environmental conditions [12,13]. These influences on the structural response have been cited as one of
the major challenges for the transition of SHM technology from research to practice [14–17]. Although the data normaliza-
tion occurs in almost all phases (except the first one) of the SPR paradigm, the focus of this study is on the fourth phase,
which is concerned with implementation of algorithms to analyze and learn the distributions of the extracted features,
aiming to distinguish between the undamaged and damaged structural state conditions [18].

Some studies in literature have established the concept of automatically discovering and characterizing the normal con-
dition of structures as clusters [9,19]. In those studies, the damage detection strategy is carried out as an outlier detection
approach based on machine learning algorithms and distance metrics, allowing one to track the outlier formation in relation
to time. One important note is related to the output-only nature of those approaches, implying the accomplishment of data
normalization without any information about the operational or environmental parameters.

Highlighting the fact that in most engineering infrastructure only data from undamaged (or normal) condition is available
on the training phase, the unsupervised learning algorithms are often required for data normalization purposes [20], i.e.
training is carried out using only data from the normal structural condition. In this context, cluster-based algorithms are
attractive due to their ability to discover groups of similar observations related to the same structural state at a given period
of time. This unsupervised implementation permits one to detect damage formation regarding the chosen main groups of
states [21–23]. Although numerous traditional unsupervised machine learning algorithms have been reported [24–27],
herein the approaches based on Mahalanobis Squared Distance (MSD) and Gaussian Mixture Model (GMM) are relevant,
due to their cluster-based performance, operating in a set of stable and undamaged state conditions [9,19].

In this paper, a straightforward and nonparametric method based on agglomerative clustering and inflated hyperspheres
is proposed to learn the normal condition of structures. The proposed method does not require any input parameter, except
the training data matrix. Two deterministic initialization procedures rooted on eigenvectors/eigenvalues decomposition and
uniform data sampling are presented. Furthermore, a random initialization is also introduced. These mechanisms pave the
way for a novel Agglomerative Concentric Hypersphere (ACH) algorithm that discovers an appropriate number of clusters
using a density-based approach.

The classification performance is investigated on the basis of Type I/Type II errors (false-positive and false-negative indi-
cations of damage, respectively) trade-off through application on two data sets from the Z-24 Bridge, located in Switzerland.
The remainder of this paper is organized as follows. In Section 2, a review of the most traditional machine learning and
cluster-based approaches for structural damage detection is introduced. The clustering constraints and initialization
procedures related to the ACH algorithm are presented in Section 3. Section 4 is devoted to describe the data sets used as
damage-sensitive features from the Z-24 Bridge. Section 5 describes the experimental results and carries out comparisons
and discussions. This study concludes in Section 6 with a summary and the main conclusions.

2. Related work

Traditionally, in most civil applications, the damage detection process is carried out using physics-based methods and
parametric approaches. However, in complex engineering structures, those methods may not be practical due to the level
of expertise and time required to their development [28,29]. On the other hand, nonparametric approaches rooted in the
machine learning field, especially cluster-based ones, have become an alternative, as they are very useful to find hidden
patterns from monitoring data and are computationally efficient [30,31]. Herein, machine learning-based approaches
addressing damage assessment are discussed; moreover, the most relevant cluster-based methods and their adaptation to
damage detection in SHM are also considered.

2.1. Machine learning approaches for damage detection

Principal component analysis (PCA) is a common method to perform data normalization and feature classification with-
out measurements of the sources of variability. Yan et al. [32] presented a PCA-based approach to model linear environmen-
tal and operational influences using only undamaged features. The number of principal components from extracted features
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