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Highlights

• We investigate different non-linear solvers for density driven flow.
• Iterative solvers of decoupling and fully coupled type are compared.
• For the fully coupled Newton iteration, we develop a transformation mimicking a local decoupling of the unknowns (pressure/salt

mass fraction).
• Based on this transformation, we tailor an algebraic multigrid method for density driven flow.

Abstract

This study investigates properties of different solvers for density driven flow problems. The focus is on both non-linear and
linear solvers. For the non-linear part, we compare fully coupled method using a Newton linearization and iteratively coupled
versions of Jacobi and Gauss–Seidel type. Fully coupled methods require effective preconditioners for the Jacobian. To that end we
present a transformation eliminating some couplings and present a strategy for employing algebraic multigrid to the transformed
system as well. The work covers theoretical aspects, and provides numerical experiments. Although the primary focus is on density
driven flow, we believe that the analysis may well be extended beyond to similar equations with coupled phenomena, such as
geomechanics.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In many problems from porous media flow effects induced by a variable density play an important role. If water
is flowing through a rock matrix containing salt, the salt is dissolved, and turns fresh water turn into brine. Since this
newly formed brine has a higher density than the water in its environment, it tends to sink down, inducing a so called
density-driven-flow. Processes belonging to same category are thermal flows, flows of fluids containing gases, like
CO2, or, as a combination of effects, thermohaline flows.
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The demand for fast solvers for this time-dependent, non-linear process is obvious: In each single time step, a non-
linear equation must be solved. This is typically achieved by some fixed-point iteration. Since a fully coupled Newton
iteration is often regarded being very demanding with respect to both discretization and solvers, often variants of
Picard or Newton iterations are preferred.

Early works, e.g., [1], highlighted the benefits of a partial Newton method. These approximate the Jacobian and
consider only the self couplings for each unknown component. This strategy is also employed, e.g., in [2,3]. These
works describe a predictor–corrector with an explicit predictor and an implicit corrector. The scheme is also suitable
for thermohaline flow and features a time stepping strategy and error estimates.

A related class of solvers are iterative coupling strategies. These provide a natural way to couple different modules
and can be considered as variants of operator splitting technique. This class has widely been applied, e.g., to multi-
phase flow [4,5], or geomechanics [6–9]. Based on a Picard iteration a similar (partially explicit) strategy is pursued
in [10,11].

However, fully coupled Newton iterations have also been applied successfully to both density driven [12,13] and
thermohaline flow [14] based on the d3f software [15,16].

One key component is (adaptive) multilevel preconditioners for a fully coupled linear systems. Multi-grid methods
belong to the class of domain-decomposition solvers that effectively use smoothing properties of a simple relaxation
process, such as Gauss–Seidel, on different levels of a (geometric) finite element hierarchy [17,18]. As a result, all
frequencies of the error are reduced equally well, resulting in a method that provides optimal (linear) for many elliptic
problems. When geometric information about the hierarchy is not accessible to the user, so called algebraic multigrid
(AMG) methods provide an interesting alternative [19,20].

For scalar problems emerging in the partial Newton method, the SAMG algorithm has successfully been ap-
plied [3]. However, designing an AMG algorithm for a fully coupled Newton is a more involved task. We address
this challenge based on the Filtering Algebraic Multigrid (FAMG) algorithm [21]. The key step will be a special
transformation eliminating negative entries from the diagonal.

This work is organized as follows: In Section 2 we set the stage by presenting the governing equations. In Section 3,
we define various solvers and preconditioners. These are then analyzed in the numerical experiments presented in
Section 4. Conclusions are found in Section 5.

2. Preliminaries

2.1. Governing equations

In brine solutions density effects play an important role, which gives rise to the problem of density driven flow.
The full equations state conservations of the fluid and the salt mass respectively, and are typically formulated in terms
of pressure p and salt mass fraction ω, e.g., [22–24]:

∂t (Φρω) + ∇ · [ρωq − ρD∇ω] = ρωqV (1a)

∂t (Φρ) + ∇ · [ρq] = ρqV . (1b)

We assume that the fluid is moving with the Darcy velocity

q = −
K

µ
(∇ p − ρg), (2)

diffusion and dispersion is due to a Scheidegger-type tensor

D = Dmol + Dmec(q). (3)

Here, the density ρ = ρ(ω) and viscosity µ = µ(ω) are given by non-linear material laws. The porosity Φ, perme-
ability K , gravity g, sources qV are constant or depend on space only.

It is important to note that although (1) is written as a time dependent problem, it is essentially a differential
algebraic equation of index 1: For any given salt mass fraction ω = ω(t, x) (1b) serves as a constraint providing a
solution ∇ p that guarantees the conservation of fluid mass. Engaging some algebra, one observes that (1b) may be
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