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a b s t r a c t

Structural Health Monitoring (SHM) is the engineering discipline of diagnosing damage
and estimating safe remaining life for structures and systems. Often, SHM is accomplished
by detecting changes in measured quantities from the structure of interest; if there are no
competing explanations for the changes, one infers that they are the result of damage. If
the structure of interest is subject to changes in its environmental or operational condi-
tions, one must understand the effects of these changes in order that one does not falsely
claim that damage has occurred when changes in measured quantities are observed. This
problem – the problem of confounding influences – is particularly pressing for civil infras-
tructure where the given structure is usually openly exposed to the weather and may be
subject to strongly varying operational conditions. One approach to understanding con-
founding influences is to construct a data-based response surface model that can represent
measurement variations as a function of environmental and operational variables. The
models can then be used to remove environmental and operational variations so that
change detection algorithms signal the occurrence of damage alone. The current paper is
concerned with such response surface models in the case of SHM of bridges. In particular,
classes of response surface models that can switch discontinuously between regimes are
discussed.
Recently, it has been shown that Gaussian Process (GP) models are an effective means of

developing response surface or surrogate models. However, the GP approach runs into dif-
ficulties if changes in the latent variables cause the structure of interest to abruptly switch
between regimes. A good example here, which is well known in the SHM literature, is given
by the Z24 Bridge in Switzerland which completely changed its dynamical behaviour when
it cooled below zero degrees Celsius as the asphalt of the deck stiffened. The solution pro-
posed here is to adopt the recently-proposed Treed Gaussian Process (TGP) model as an
alternative. The approach is illustrated here on the Z24 bridge and also on data from the
Tamar Bridge in the UK which shows marked switching behaviour in certain of its dynam-
ical characteristics when its ambient wind conditions change. It is shown that treed GPs
provide an effective approach to response surface modelling and that in the Tamar case,
a linear model is in fact sufficient to solve the problem.
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1. Introduction

In very brief terms, Structural Health Monitoring (SHM) is the engineering discipline concerned with inferring the state of
health of a structure or system from measurements obtained from sensors permanently installed on the structure or within
the system [1]. It is possible to exploit a very diverse range of sensor technologies in the implementation of an SHM system,
but one of the more common choices is to monitor dynamical response using accelerometers. This choice leads to vibration-
based SHM, and this is the main choice considered in this paper.

It is critical to note that an SHM system is much more than a sensor network. It is almost always the case that the infor-
mation about the health of the structure is well hidden in the raw time series data acquired by sensing. This issue arises
because small incipient damage will not usually cause a major departure from the dynamical behaviour of the healthy struc-
ture. Because of this fact, the vital ingredient in any SHM system is an inference engine which constructs low-dimensional
data vectors called features in which the effect of damage is much more visible. An example of a damage-sensitive feature
vector often used in vibration-based SHMwould be a set of the natural frequencies or resonance frequencies of the structure
of interest. Natural and resonance frequencies are functions of the structural stiffness and will (usually) decrease when dam-
age - such as a fatigue crack - causes a local reduction in stiffness. Determining natural frequencies from the raw time data is
one example of feature extraction as it is referred to in the context of pattern recognition or machine learning [1]. Once
damage-sensitive features have been determined, the SHM inference engine can proceed to an analysis which provides diag-
nostic and prognostic information about the health of the structure.

One of the major problems associated with SHM, is that features may change as a result of mechanisms other than dam-
age and one does not usually wish to raise an alarm as a result of these benign changes. These other influences on the fea-
tures will be referred to here as confounding influences; they most often arise in the context of engineering as the result of
changes in the environment or operating conditions of the structure of interest. For the bridges discussed in this paper, ambi-
ent temperature is an environmental variable which strongly affects the SHM features, while traffic loading is an equally
important operational influence. If natural frequencies are to be used as features for SHM, it has long been known that vari-
ations in the frequencies due to temperature changes can mask variations due to damage [2]. In order to implement damage
detection by detecting changes in features, one must clearly produce features that are sensitive to damage but insensitive to
environmental and operational variations, or alternatively, one must project out from the features the influence of the
benign variations. This process is commonly referred to in the SHM literature as data normalisation; various techniques
can be applied and a good, fairly recent, survey of the field can be found in [3].

Among the techniques available for data normalisation, one of the simplest is a regression-based approach. This relies on
the availability of measurements of the environmental or operational variables of interest. When the features for SHM are
based on the dynamics of the structure – as in vibration-based SHM – the response variables almost always change on a
much shorter time-scale than the confounding influences. For example, accelerations measured on a bridge will have fre-
quencies associated with tens of Hertz, while cycles of variation associated with temperature or traffic will be on scales
of hours or more. This means that time histories acquired over hours or days will show their main variation as a result of
the confounding influences, with the dynamical behaviour superimposed as a form of high-frequency ‘noise’. Fitting a regres-
sion model to such data with the environmental or operational variables as the independent variables will then capture only
the dependence on the confounding influences, predictions from this model can then be subtracted from subsequent data,
with the remaining residual (hopefully) sensitive only to damage. Regression models used in this context are often called
response surface models and can vary in sophistication from simple polynomials [4], to state-of-the-art structures derived
frommodern machine learning theory like artificial neural networks and support vector machines [5,6]; examples from both
ends of the spectrum will be presented in this paper. Complications can arise if the confounding influences cause discontin-
uous changes in the features as the ambient variables change, for example if polynomial models are selected, discontinuous
behaviour may force the choice of very high-order polynomials with the result that very many coefficients need to be esti-
mated. If the response surface models have the capability to switch between simple (e.g. linear) submodels, the number of
parameters for estimation from the data can be much smaller, such models are often referred to as parsimonious. Parsimo-
nious models are always selected where possible as they require less training data for their estimation problem, and data
from structures in engineering SHM problems, particularly data corresponding to damage states, can sometimes be in short
supply. In the machine learning context, parsimonious models are desirable because they are less prone to overfitting [7].

As mentioned above, when nonlinear models are required, there are numerous options for the model structure. The struc-
ture chosen here is the Gaussian Process (GP) [8]; this represents a powerful nonparametric regression technique which has
been developed considerably within the machine learning community in the last 10–15 years. Advantages of the GP
approach include a natural Bayesian framework for analysis and the automatic availability of confidence intervals for model
predictions. In fact, Gaussian processes have a pedigree in terms of response surface modelling and sensitivity analysis [9],
and the current authors have exploited this for their previous studies on engineering problems [10,11].

The approach to data normalisation discussed above and in the remainder of the paper can be referred to as a subtraction
strategy. Another powerful approach can be based on the idea of projection, whereby the subspace of the feature space con-
taining the confounding influences is identified and the features are projected onto the orthogonal complement of the cor-
rupted subspace. The projection approach has various merits, including the property that one does not require
measurements of the latent variables driving the confounding influences. The projection approach is not discussed further
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