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(with associated assumptions and approximations) do not have to be known. In addition,
it has the distinction of not requiring the form and parameter values of the nonlinearity
when the input and output degrees of freedom are away from the nonlinearity itself.
Feedback linearisation T_his represents a valuable advance over the conventional time-domain feedback linearisa-
Receptance method tion approach.
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1. Introduction

One of the advantages of the receptance method in active vibration control is that it makes use of data readily available
from a standard modal test on an engineering structure and does not require knowledge or evaluation of the system matrices
M, C,K representing mass, damping and stiffness. It was introduced for single-input systems in 2007 by Ram and Motter-
shead [1] and extended in 2013 [2] for the multiple-input-multiple-output partial assignment of system eigenvalues. Being
a frequency domain approach, the method has been quite widely applied to linear time-invariant (LTI) systems. Ghandchi
Tehrani et al. [3] applied the receptance-based method to demonstrate successfully considerable modification of the
dynamic behaviour of a heavy modular test structure using electromagnetic actuators and accelerometers. The same authors
developed a receptance method for robust eigenvalue assignment [4]. Singh and his colleagues [5-7] applied it to problems
of flutter control in aeroelastic systems and Ouyang et al. [8] developed a receptance method with convex constraints,
thereby ensuring the existence of a unique solution with a fast-converging algorithm. Bai et al. [9] introduced a robust partial
pole placement method, including time delay, based on a combination of receptances and system matrices.

Application of the receptance method to nonlinear vibration control seems to be restricted to the work of Ghandchi
Tehrani et al. [10] who made use of the describing function approximation [11] whereby the functional nonlinearity is
replaced by amplitude dependence. They considered the single degree of freedom Duffing oscillator and assigned the peak
resonance to a prescribed value. The nonlinear controls literature [12-14] is concentrated mainly upon time-domain
methods, including sliding mode control, backstepping and feedback linearisation. The output-linearisation problem is that
of the under-actuated system with equal numbers, m, of actuators and sensors less than the number, n, of degrees of freedom
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of the system i.e. m < n. There is no requirement for actuators and sensors to be placed at the same locations. Coordinate
transformation is carried in order to achieve two systems of nonlinear equations that can be treated separately. The first sys-
tem is controllable and the control input is designed to cancel the nonlinearity, resulting in a linear system with 2m eigen-
values which may be assigned to desired locations on the s-plane. The second system of (n —m) equations, which are
generally nonlinear, are designed to be uncontrollable. Assignment of the 2m eigenvalues is necessary but not sufficient
for stability of the complete system. In order to achieve the required full-system stability the zero-dynamics - obtained
by setting the output coordinates to zero in the uncontrollable (n — m) x n system - must also be stable. This is the equiv-
alent of the minimum phase controller in LTI systems. There are numerous papers describing the application of conventional
time-domain feedback linearisation, including Fossen and Paulsen [15] on ship steering, Ko et al. [16] on aeroelastic wind-
tunnel tests, Poursamand [17] on the control of antilock brakes, Bechlioulis and Rovithakis [18] on multiple-input multiple-
output (MIMO) tracking controllers, Shojaei et al. [19] on tracking control for wheeled robots, and Tuan et al. [20] on the
nonlinear dynamics of overhead cranes. The present authors’ research includes the development of feedback linearisation
methods for the treatment of non-smooth nonlinearity (bilinear stiffness and freeplay) [21] and wind-tunnel aerofoil tests
with structural nonlinearity [22]. Preliminary experimental research on non-smooth nonlinearity using a laboratory 3-
degree of freedom mass-spring system [23] demonstrated the practical feasibility of the feedback linearisation approach
and is presently being further developed, including the practical application of the method described (in theory) in the pre-
sent article.

In Section 2 we present new theory for investigating the zero dynamics of LTI systems using receptances, whereas in
Section 3 the conventional matrix-based procedure is described. Then, in Section 4, the new theory is validated by showing
that the two approaches produce identical results. In the analysis, we represent the nonlinearity using describing functions,
so that for sinusoidal displacement amplitudes maintained constant, the system is truly LTI This is equivalent to a slowly
progressing amplitude-controlled swept sine test. The usual requirement for stability of the zero dynamics is then a straight-
forward eigenvalue problem. The use of describing functions, though suitable for many structural dynamics applications, is
limited to the analysis of weak nonlinearities so that the stability obtained is only locally asymptotically convergent to a
stable-zero attractor. In Section 5 new theory is presented for output feedback linearisation using receptances. The method-
ology described has the same advantage as the receptance method in LTI systems, namely that the system matrices, which
generally involve approximation and inaccuracy, are not required, and instead are replaced by measured receptance data.
Also, when the input and output degrees of freedom are away from the nonlinearity, it is unnecessary to know the form
and parameters of the nonlinearity - the only exception being its location, which must be known. This is a considerable
advantage over the conventional time-domain feedback linearisation approach where the form of the nonlinearity must
be known and any error in its parameterisation must be corrected adaptively. The theory is supported by a series of numer-
ical examples.

2. Zero dynamics for the LTI system using receptances

Consider the linear n x n system with m inputs and m outputs (m < n),

MX + Cx + Kx = Bu
V=Xim=[X1 X2 - Xn]

T (1)

where M, C,K € R™" are the mass, damping, and stiffness matrices, respectively; B € R"™*™ is the force distribution matrix.

The vector of input forces is defined by u € R™!; the system displacements are given by x € R™! and the available outputs

are y € R™!. Expressing Eq. (1) in frequency domain yields,
X(s) = H(s)(Bu(s))

¥(S) = Xim(s) (2)

where H(s) = (Ms? + Cs + K)’1 € C™™" is the receptance matrix.
A transformation matrix may be defined as,

z=Tx
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