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a b s t r a c t

The orbit shape responded from each concerned section of anisotropic rotating machinery
varies along with the axial position of unbalance force, especially its parameters like the
inclination angle and the major to minor axis ratio. Considering the axial position differ-
ence between the original unbalance mass existed and the balancing planes adopted, vibra-
tion reduction with balancing could be disturbed by the anisotropy of rotating machinery.
Through in-depth analysis on these mechanisms, a method for anisotropy evaluation is
presented based on the dispersion characteristics estimation of system difference coeffi-
cients. Balancing experiments under different degrees of system difference coefficients dis-
persion and different unbalance mass distribution are implemented to show the
effectiveness of this method. Essentially, the unbalance response of each concerned section
is a synthesis of system difference coefficients and unbalance mass. Therefore, as weight
coefficients of unbalance mass, the dispersion evaluation indexes of system difference
coefficients can be used in distributing the original unbalance mass to further reduce the
disturbance of system anisotropy to vibration reduction.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Balancing is an important method for vibration reduction of rotating machinery, and the theoretical researches on
dynamic balancing method now are well-established [1–3]. In recent years, related researches mainly focus on two aspects.
One is about how to further improve the balancing efficiency—non-trial balancing method [4–7] and active balancing control
[8–10] which are two typical research directions in this field. The other aims at how to enhance the vibration reduction effect
of dynamic balancing operation. Among all factors that could be involved, system anisotropy has been confirmed as one of
the most important factors that could seriously affect balancing result. Meanwhile, balancing anisotropic rotating machinery
has also attracted the attention of researchers around the world. Fujisawa and Shiohata [11] fused the information that
acquired from two mutually perpendicular radial directions and used the least square influence coefficients method obtain-
ing balancing scheme. Kang et al. [12,13] utilized the precession information of concerned sections to give consideration to
system anisotropy. Qu et al. [14,15] presented a holobalancing method based on the research of holospectrum, which uses
the initial phase vector of orbits to represent unbalance response.

The balancing methods mentioned above are all based on comprehensive utilization of the vibration information that col-
lected from different radial directions of concerned sections, and they consider system anisotropy as well as the optimization
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of balancing schemes. Nevertheless, related analysis further show that: Once the number and axial position of balancing
planes are determined, theoretically an optimal balancing effect on rotating machinery with certain distribution of unbal-
ance mass will be determined as well. Then, no matter which method is applied, the actual balancing result can only

Nomenclature

Ai,k, ci,k amplitude and phase of influence coefficient in X direction
Cxx, Cyy, Cyx, Cxy damping matrices
F transition matrix of unbalance mass to system generalized force
fxi, fyi generalized excitation forces in the ith element
G rotation matrix
i, k, pi, qk axial position indexes of an element
j imaginary number (=

ffiffiffiffiffiffiffi
�1

p
)

Kxx, Kyy, Kxy, Kyx stiffness matrices
Mxx, Myy inertia parameter matrices
m number of concerned elements
n number of discrete equivalent elements
t time variable
Rpi, Qpi,k deviation matrices
pi, qi generalized displacements of the ith element
Tx, Ty influence coefficient matrices in X and Y direction
X, Y, Z directions of coordinate system
xi, yi displacement response of the ith element in X and Y direction
vexpj1 average system difference coefficient
vi,k, 1i;k amplitude and phase of system difference coefficient
vi, 1i amplitude and phase of response system difference coefficient
�vpi, �1pi amplitude and phase of response difference coefficient to pure correction mass excitation
hxi, hyi deflection angles of the ith element in X and Y direction
ui initial phase of orbit excited by original unbalance
�upi initial phase of orbit excited by pure correction mass

u
_

pi, u
_

pi;k initial phase of orbit of equivalent response
ki, /i amplitude and phase response of the ith element (under original unbalance excitation) in X direction
�kpi, �/pi amplitude and phase response to pure correction mass excitation in X direction

k̂pi, /̂pi amplitude and phase response after balancing in X direction

k
_

pi, /
_

pi amplitude and phase of equivalent response of average system difference coefficient in X direction
mi, ai weight and phase of unbalance in the ith element
rk normalized system deviation
s
_

pi, s
_

pi;k orbit scale factors of equivalent response
tk normalized coefficient
x circular frequency
ni, wi amplitude and phase response of the ith element (under original unbalance excitation) in Y direction
�npi, �wpi amplitude and phase response to pure correction mass excitation in Y direction

n̂pi, ŵpi amplitude and phase response after balancing in Y direction

n
_

pi, w
_

pi amplitude and phase of equivalent response of average system difference coefficient in Y direction

Operators
(.)T transpose of a matrix or a vector
[�] matrix or vector
[�]pi vector of displacement response of the pith element
[]�[] dot product of matrices or vectors
|�| modulus of a complex number
angle (�) argument of a complex number
tr(�) trace of a matrix

Abbreviations
ASDC average system difference coefficient
OSF orbit scale factor
RDC response difference coefficient
SDC system difference coefficient
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