
Estimating the parameters of dynamical systems from Big Data
using Sequential Monte Carlo samplers

P.L. Green a,c,⇑, S. Maskell b,c

a School of Engineering, University of Liverpool, Liverpool L69 7ZF, UK
bDepartment of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZF, UK
c Institute for Risk and Uncertainty, University of Liverpool, Liverpool L69 7ZF, UK

a r t i c l e i n f o

Article history:
Received 29 April 2016
Received in revised form 16 December 2016
Accepted 19 December 2016

Keywords:
Big Data
Parameter estimation
Model updating
System identification
Sequential Monte Carlo sampler

a b s t r a c t

In this paper the authors present a method which facilitates computationally efficient
parameter estimation of dynamical systems from a continuously growing set of measure-
ment data. It is shown that the proposed method, which utilises Sequential Monte Carlo
samplers, is guaranteed to be fully parallelisable (in contrast to Markov chain Monte
Carlo methods) and can be applied to a wide variety of scenarios within structural dynam-
ics. Its ability to allow convergence of one’s parameter estimates, as more data is analysed,
sets it apart from other sequential methods (such as the particle filter).

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses the situation where one is attempting to infer the parameters of a dynamical model from a large set
of data which, because of its size, cannot be processed using current methods. Here, zt denotes a vector of measurements,
obtained at time t, and h is a vector of the model’s parameters. The aim is to realise probabilistic estimates of h, given the
available data, via Bayes’ theorem:

pðhjz1:nÞ / pðz1:njhÞpðhÞ ð1Þ

where z1:n ¼ fz1; . . . ; zng represents the set of all measurements up to time t ¼ n. In [1,2] it was suggested that, using Markov
chain Monte Carlo (MCMC) methods, one could generate samples from pðhjz1:tÞ while t is gradually increased. Such an
approach facilitates a gradual transition from prior to posterior, which aids MCMC convergence (in a similar manner to
simulated annealing). It also allows one to analyse how one’s parameter estimates converge as more data is analysed, thus
helping to establish when a sufficient amount of data has been utilised. The computational cost of such an approach,
however, increases dramatically as more data is analysed. This makes it poorly suited to the situation where large sets of
new (potentially important) measurements are expected to arrive in the future. Other approaches such as [3] involve the
selection of small subsets of ‘highly informative’ training data from large data sets. While this reduces computational
cost, it involves the deliberate omission of measurement data which, in hindsight, may contain important information
(and reduce uncertainty in the posterior as a result).
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In this paper, an algorithm based on Sequential Monte Carlo (SMC) methods is proposed, which is able to address the
aforementioned issues. Fundamentally, the efficiency of the method proposed here lies in its ability to exploit the inevitable
redundancies that arise in large sets of measurements, as well as its suitability for modern computing architectures. It is
important to note that the method proposed in this paper is different from other, recently proposed sampling methods
([4,5] for example), as it is specifically aimed at the situation where a prohibitively large data set is available. The proposed
method also allows one to track how the uncertainties in one’s parameter estimates reduce as more data is analysed - thus
establishing when a sufficient amount of data has been processed.

In the interest of completeness, a brief introduction to SMC methods, as well as a description of previous work relevant to
the problem of interest, is given in the following section.

2. Sequential Monte Carlo methods

2.1. Importance sampling

This section begins with a brief description of importance sampling. Here pðhÞ is defined as a target probability distribu-
tion, from which one wishes to estimate the expected value of a function, f ðhÞ. p�ðhÞ is used to represent an unnormalised
target, such that:

pðhÞ ¼ p�ðhÞ
Z

; Z ¼
Z
p�ðhÞdh ð2Þ

(for generality it is assumed that Z is difficult to estimate here - a situation which often arises in Bayesian inference prob-
lems). The expected value of f ðhÞ can be written as

E½f ðhÞ� ¼
R
f ðhÞp�ðhÞdhR
p�ðhÞdh ¼

R
f ðhÞqðhÞwðhÞdhR
qðhÞwðhÞdh ð3Þ

where wðhÞ ¼ p�ðhÞ
qðhÞ are ‘importance weights’ and qðhÞ is a user-defined ‘proposal distribution’ - a probability distribution from

which it is relatively easy to generate samples. Eq. (3) implies that

E½f ðhÞ� �
XN
i¼1

f ðhiÞ ~wi ð4Þ

where fh1; . . . ; hNg have been generated from qðhÞ and, adopting the notation wi � wðhiÞ,

~wi ¼ wiP
jw j

; i ¼ 1; . . . ;N ð5Þ

are defined as ‘normalised importance weights’. This reweighting procedure allows estimates of E½f ðhÞ� to be realised using
samples from qðhÞ, which is useful when it is difficult to generate samples from the target distribution, pðhÞ, directly.

2.2. Resampling

By defining f ðhjÞ ¼ dðhj � hÞ where d is the Dirac delta function, it follows that

E½f ðhjÞ� ¼
Z

dðhj � hÞpðhÞdh ¼ pðhjÞ: ð6Þ

This implies that, if one has a set of samples (and accompanying normalised weights) fh1; ~w1g; . . . ; fhN; ~wNg while a new set
of samples, f�h1; . . . ; �hNg, is chosen such that

Prð�h ¼ hiÞ ¼ ~wi ð7Þ
then f�h1; . . . ; �hNg will be approximate samples from the target. The weights of these new samples will therefore be equal (for
more information the tutorial [6] is recommended). Resampling is often used when it is found that relatively few of the cur-
rent samples have significant weight as it helps to remove those samples which are of little importance. It is often used to
tackle the ‘degeneracy’ problem that can be encountered in the application of particle filters. To indicate when resampling is
required, the concept of ‘effective sample size’ was introduced in [7,8]. This involves defining

Neff ¼ 1P
i
~wið Þ2

ð8Þ

and choosing to conduct resampling when Neff falls below some kind of threshold (N=2, for example, is used throughout the
current paper). It should be noted that, while resampling helps to remove ‘unimportant’ samples, it doesn’t aid exploration of
the parameter space - it can only produce replicas of the existing samples.
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