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The study focuses on vibration response based health monitoring for an operating wind
turbine, which features time-dependent dynamics under environmental and operational
uncertainty. A Gaussian Mixture Model Random Coefficient (GMM-RC) model based
Structural Health Monitoring framework postulated in a companion paper is adopted
and assessed. The assessment is based on vibration response signals obtained from a sim-
ulated offshore 5 MW wind turbine. The non-stationarity in the vibration signals origi-
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nates from the continually evolving, due to blade rotation, inertial properties, as well as
the wind characteristics, while uncertainty is introduced by random variations of the wind
speed within the range of 10-20 m/s. Monte Carlo simulations are performed using six dis-
tinct structural states, including the healthy state and five types of damage/fault in the
tower, the blades, and the transmission, with each one of them characterized by four dis-

Time-dependent ARMA models
Linear parameter varying ARMA models
Wind turbines

tinct levels. Random vibration response modeling and damage diagnosis are illustrated,
along with pertinent comparisons with state-of-the-art diagnosis methods. The results
demonstrate consistently good performance of the GMM-RC model based framework,
offering significant performance improvements over state-of-the-art methods. Most dam-
age types and levels are shown to be properly diagnosed using a single vibration sensor.

© 2017 Elsevier Ltd. All rights reserved.

Important Conventions Bold-face upper/lower case symbols designate matrix/column-vector quantities, respectively.
Matrix transposition is indicated by the superscript T. A functional argument in parentheses designates function of a real
variable; for instance x(t) is a function of analog time t € R. A functional argument in brackets designates function of an inte-
ger variable; for instance x|[t] is a function of normalized discrete time (t = 1,2,...). The conversion from discrete normalized
time to analog time is based upon (t — 1)Ts, with T, designating the sampling period. A hat designates estimator/estimate of

the indicated quantity; for instance 9 is an estimator/estimate of 6.
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Nomenclature

Main Acronyms
AUC area under the ROC curve
ARMA  Auto Regressive Moving Average

BIC Bayesian Information Criterion
FPR False Positive Rate

FS Functional Series

GMM Gaussian Mixture Model

LPV Linear Parameter Varying

NID Normally Independently Distributed
PDF Probability Density Function

RC Random Coefficient

ROC Receiver Operating Characteristic
RSS Residual Sum of Squares

SSS Series Sum of Squares

TARMA Time-dependent ARMA

TNR True Negative Rate

TPR True Positive Rate

TV-PSD Time-Varying Power Spectral Density

Main symbols

y=[y[1] y2] --- yIN] ]T € RN N-sample length observation (random vibration response) vector
0=1[0; 0 --- 0y ]T € R" parameter vector

v=1{o0,a,b,c,...} structural state (class) (o: Healthy; a: Damage type A; b: Damage type B; ...)

m model of the vibration response

UL GMM representation

L dimensionality of the GMM representation

p(x) Probability Density Function (PDF) associated with the corresponding random vector x
P(a) probability of the random event a

p(x,y) joint PDF of the random variables ¥ and y
p(y|x)  conditional PDF of y given x

1. Introduction

Vibration-response-based Structural Health Monitoring (SHM) aims at damage diagnosis for structures based on mea-
sured vibration response signals [1,2]. The application of this technology is of particular importance for wind turbines, since
these are costly, remotely located, structures for which maintenance and repair costs are considerable [3,4]. SHM is thus
important for avoiding structural damage, which may itself lead to downtimes and even catastrophic events, while keeping
maintenance and repair costs low. Nonetheless, the design of vibration-response-based SHM systems for operating wind
turbines poses certain challenges, including the following:

In-operation diagnosis. Uninterrupted operation of wind turbine facilities is necessary for maximizing power produc-
tion and economic revenue. Therefore, it is most desirable to perform SHM during normal operation. Appropriate SHM
methods must thus have the capability to deal with the dynamics characterizing an operating wind turbine, which fea-
ture cyclo-stationary and, in a broader sense, non-stationary behavior [5-7]. Moreover, since the actual exciting forces are
not measurable, the methods must be solely based on random vibration response signals.

Changing environmental and operational conditions. Wind turbines operate in a constantly changing environment
determined by varying winds and weather conditions. Besides, they are set to operate at different regimes in response
to the varying power demands. As a consequence, the characteristics of the random vibration response may change con-
siderably with changes in the environmental and operational conditions [7]. Thus, the SHM system must be capable of
coping with such changes and distinguish them from those due to damage [1,8].

Complex models of the dynamics. Physics-based models of the wind turbine dynamics under varying excitation and
operational conditions are generally quite complex for use in practical SHM systems. As a consequence, data-based mod-
els derived from random vibration response signals, obtained at specific locations, need to be preferably employed. Such
models may also lead to more practical and potentially more effective SHM [2,9].

Most of the currently available vibration-based SHM methodologies for wind turbines utilize characteristic quantities
(features) derived from frequency domain representations or modal properties of the structure. However, the extraction
of frequency-domain or modal characteristics from random vibration responses of operating wind turbines requires special-
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