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a b s t r a c t

Frequency response functions are often used in the design of damped structures to assess
the level of vibration and evaluate the performances of a damping treatment. Rather than
evaluating frequency sweeps on a large-scale finite element system, the frequency
response functions can be efficiently computed through model reduction techniques.
This paper reviews and compares the reduction techniques based on modal projection
which have been developed for structures with frequency-dependent damping, such as
structures treated with constrained viscoelastic layers. The insight obtained by this com-
parison allows to make a motivated choice for a particular model reduction technique.
All reviewed methods are quantitatively compared on two illustrative examples.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Limiting resonant or nearly resonant vibrations is classically achieved through the application of damping treatments
such as constrained viscoelastic layers [1–5]. An important tool in the design of such structures is the development of pre-
dictive models for numerical simulation, which makes use of the finite element approach. In particular, the finite element
discretisation of the differential equations of a problem consisting in a vibrating structure with frequency-dependent damp-
ing results in the following equations of motion:

K�ðxÞ �x2M
� �

U�ðxÞ ¼ F ð1Þ

where x is the angular frequency, K�ðxÞ is the complex, frequency-dependent, symmetric and positive semi-definite stiff-
ness matrix, M is the real, constant, symmetric, positive definite mass matrix, F is the real and constant externally applied
force amplitude vector and U�ðxÞ is the complex displacement amplitude vector at the angular frequency x. This general
expression of the equations of motion is consistent with most of the classical damping models (hysteretic, viscous,
viscoelastic).

In structural design problems, the geometry, component properties and positioning of the damping treatments are opti-
mised to achieve better performance. The influence of some environmental and/or operating parameters on the efficiency of
a damping treatment needs also to be determined. For instance, the viscoelastic materials used in some passive systems have
their mechanical properties varying with frequency, temperature, prestrain, . . . The efficiency of a damping treatment is
generally assessed using frequency response functions. Therefore, to keep the design stage as short as possible, there is a
need for reliable computational techniques capable of predicting the frequency response functions of structures with
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frequency-dependent damping at low cost. The direct method consisting in solving Eq. (1) for a large number of frequency
steps can be used to evaluate frequency response functions but this approach is computationally expensive. In particular,
structures with viscoelastic layers require large order finite element models to get realistic predictions of the dynamic beha-
viour. It makes the direct approach incompatible with optimisation.

Instead, several methods have been developed to reduce the computational cost of frequency response estimation [6,7].
Many of the reduction methods which are proposed in the literature rely on the assumption that an approximation U�

r of the
solution U� can be constructed in a subspace of reduced dimension spanned by the columns of a reduction basis T:

U� � TU�
r ð2Þ

A projection of the matrix system from Eq. (1) on a reduction basis reduces the system size to be solved and an approx-
imated solution is obtained with important computational gain. One class of reduction methods, which will be referred to as
modal-based reduction methods, consists in using vibration modes, representing the dynamics of the structure, in the reduc-
tion basis T. The most well-known approach is the mode superposition method [8,9], where a limited number of vibration
modes is used to retrieve the dynamic displacement. The assumptions underlying this method are that the system is
undamped or lightly damped and that the eigenfrequencies are well separated [9]. This approach gives satisfactory results
for structures with viscous or hysteretic damping but for structures with strongly frequency-dependent damping, such as
sandwich structures with viscoelastic insertions, numerical difficulties arise and have led to the development of computa-
tional variants of the mode superposition method [10–18].

Though extensive literature exists on reduction methods, few studies are dedicated to their review and comparison
[6,7,13]. In [7,13], comparative studies of several reduction methods are carried out, but they are focused on the precision
of the methods and do not address computational efficiency. In [6] both accuracy and computational cost of the reduction
methods are under study but the analysis is dedicated to interpolatory model order reduction techniques. Therefore, the
objectives of this paper are twofold. The first one is to review existing modal-based reduction methods for the evaluation
of the dynamic response of structures with frequency-dependent damping. The second objective is to compare the precision
and the computational cost of those methods with respect to the direct method through two illustrative examples. The
insight gained by this comparison helps in making a motivated choice for a particular model reduction technique. The out-
line of this paper is as follows. Section 2 reviews the classical mode superposition approach and highlights its limitations
when applied to structures with frequency-dependent damping. Section 3 describes the different variants of the mode
superposition method and their implementations. In Section 4, those methods are applied to two sandwich structures with
viscoelastic insertions and a comparison in terms of precision and computational time is made. Two systems of different
scales are considered for this comparison in order to assess the influence of the model size on the performance of the
modal-based reduction methods. Finally, conclusions are drawn in Section 5.

2. The classical mode superposition method and its limitations

The finite element discretisation of the differential equations of a problem consisting in a vibrating elastic structure
results in the equations of motion of the system, which in absence of damping are typically of the form:

K�x2M
� �

UðxÞ ¼ F; ð3Þ
where K and M are respectively the stiffness and the mass matrices, UðxÞ represents the solution vector at the angular fre-
quencyx, containing the unknown displacement of the structure, and F is the load vector. The generalised eigenvalue prob-
lem associated with Eq. (3) is:

K�x2
kM

� �
Uk ¼ 0; ð4Þ

wherexk and Uk are respectively the eigenfrequency and the eigenvector, also called normal modes, associated to the mode
k (k 2 ½1 . . .N�, with N the size of the system). Orthogonality relationships between eigenmodes of distinct eigenfrequencies
exist which, in case of M-normalised eigenmodes, leads to the following relations:

UT
rMUs ¼ drs; ð5Þ

UT
rKUs ¼ x2

s drs;

where drs denotes the Kronecker delta function. Because the eigenmodes Uk are independent and orthogonal, they form a
basis T spanning the N-dimensional space in which the solution vector has a unique expansion:

U ¼
XN
k¼1

Ukvk: ð6Þ

The modal coordinates vk are solutions of the equation:

ðx2 �x2
kÞvk ¼ UT

kF; ð7Þ
which is obtained by projection of Eq. (3) on the basis of normal modes.
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