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a b s t r a c t

Collecting vibration data from revenue service trains could be a low-cost way to more fre-
quently monitor railroad tracks, yet operational variability makes robust analysis a chal-
lenge. We propose a novel analysis technique for track monitoring that exploits the
sparsity inherent in train-vibration data. This sparsity is based on the observation that
large vertical train vibrations typically involve the excitation of the train’s fundamental
mode due to track joints, switchgear, or other discrete hardware. Rather than try to model
the entire rail profile, in this study we examine a sparse approach to solving an inverse
problem where (1) the roughness is constrained to a discrete and limited set of ‘‘bumps”;
and (2) the train system is idealized as a simple damped oscillator that models the train’s
vibration in the fundamental mode. We use an expectation maximization (EM) approach to
iteratively solve for the track profile and the train system properties, using orthogonal
matching pursuit (OMP) to find the sparse approximation within each step. By enforcing
sparsity, the inverse problem is well posed and the train’s position can be found relative
to the sparse bumps, thus reducing the uncertainty in the GPS data. We validate the sparse
approach on two sections of track monitored from an operational train over a 16 month
period of time, one where track changes did not occur during this period and another
where changes did occur. We show that this approach can not only detect when track
changes occur, but also offers insight into the type of such changes.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Monitoring track geometry is essential to ensuring the safe operation of rail-infrastructure, yet current inspection tech-
niques require track downtime [1,2]. Monitoring railroad track geometry with in-service vehicles could reduce required
track downtime while providing more continuous information than using dedicated inspection vehicles [3–7]. Decreases
in the cost of sensing equipment have made monitoring tracks from in-service vehicles economical while recent advances
in analytical techniques have made processing the collected data feasible.

Three main types of sensing technology have been proposed for in-service trains: optical sensors (using lasers) [8,9],
magnetic flux sensors (also called Foucault currents or Eddy Currents) [10,11], and inertial sensors (using accelerometers)
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[3–6,12–20]. Optical sensors are used widely on track geometry cars, however they stop functioning if the lens becomes
dirty. They require constant cleaning and maintenance, and thus are not appropriate for long term-monitoring from in-
service vehicles [21]. Foucault current monitoring requires a magnetic coil placed close to the rail, making the coil vulnerable
to objects along the track. Given the drawbacks of other sensing technologies, inertial sensors have become the most popular
approach. The sensors are often placed on the axle box [3–5], but can be placed anywhere on the train even inside the cabin
[18]. The challenge in using accelerometers lies in analyzing the collected data.

There have traditionally been two approaches to analyzing train-based accelerometer data: using an explicit model or an
implicit model. Explicit models attempt to determine the precise track profile, typically using a priori knowledge of the train
and its suspension system to solve an inverse problem [15,18]. For each pass over the tracks, the track profile is estimated;
deterioration in the tracks can be detected as changes in the profile. Implicit models derive a feature from the accelerometer
data which often serves as a proxy for track geometry or roughness. In these models, deterioration is detected when the val-
ues of the features change. Notable implicit models have been based on wavelets [3,12,22,23], the Short Time Fourier Trans-
form [4], signal standard deviation [5], and signal energy [6,24].

Implicit models tend to be more robust and may allow for the detection of a change, but as the feature is not directly
representative of the track state, they often do not provide insight into the nature of the change. Explicit models can estimate
the track profile before and after a change so that the mechanism of the change could in theory be determined. However, to
our knowledge, this technique has not been used for long-term monitoring [15,18]; the instability in solving the inverse
problem directly makes consistently determining the track profile a challenge.

In this paper, we propose a novel approach to approximate the track profile. As the dynamic response of the train contains
information both about the train and about the tracks themselves, we decompose the vibration signal in an effort to separate
these sources. To do so, we solve an inverse problemwhich determines the train’s main dynamic properties and the profile of
the track.

Solving such an inverse problem can be unstable; we constrain the problem to make it tractable. The first constraint
comes from the observation that the train’s suspension is typically activated by a few large bumps in the track. Thus we
aim to find these discrete ‘‘bumps” and do so by enforcing sparsity in the estimated track profile.

The second constraint pertains to the characterization of the train system. We know the approximate properties of the
train a priori, but these can change over time depending for example, on passenger loading. Thus we want to solve for train
properties from the data, but doing so directly can provide noisy results. In a previous study [6], we found that the train’s
fundamental mode dominates its response. So we limit the problem to characterizing this fundamental mode which can
be represented as a single degree-of-freedom damped oscillator. By modeling one part of the train vibration, we are able
to reduce some of the train dependent variables in the signal.

In some ways, this technique resembles the explicit model mentioned earlier. We solve an inverse problem that provides
information about both the train and the tracks. However, due to the sparse constraints, the resultant track profile is quite
different from the true profile. In this regard, the technique resembles the implicit model more closely. The resultant sparse
track profile can be thought of as a feature indicative of track state. We can explore the merit of this sparse constraint by
testing how closely changes in the sparse profile match changes in true track profile. Compared to other features, like wave-
lets, the sparse profile provides greater insight because it can show the direction in which the track has changed, for example
either settlement or uplift.

Enforcing sparsity in the track has a number of benefits [25–28]: (1) the problem is constrained so some properties of the
train system can be found without making the problem ill-posed, (2) the discrete bump locations can be used to locate the
train, overcoming GPS error, and (3) the size of the bumps are useful low-dimensional features for detecting the significance
of changes in the track.

(1) We characterize the train system while constraining it to the physics of the problem. We require that the transfer
function correspond to a simple damped oscillator. When enforcing this condition, the parameters found relate to
the stiffness and damping ratio of the main suspension between the wheel truck and the train chassis. This makes
physical sense because when a large bump in the tracks excites the train, the largest displacement is in the primary
suspension, and we require that the approximate roughness models only large bumps. Unlike previous methods in
which the parameters of the train must be known a priori, our approach solves for the train properties in the process
of solving for the track profile.

(2) We locate the train using a GPS antenna, but due to overhead interference and other factors, the position-error can
exceed 10 m. This level of error makes it challenging to compare data between passes. Train localization has been
studied in the literature primarily for collision avoidance [29]. Some researchers have proposed using track features
to help localize trains in this context [30,19]. For monitoring purposes, precise localization is of paramount impor-
tance. Enforcing sparsity facilitates localization because the position of the train can be found relative to the sparse
bumps.

(3) Finally, the size of the bumps can be used to determine whether the tracks have changed or deteriorated. If a complete
rail profile were to be calculated, the high dimensionality of the data (proportional to track length) would make robust
change detection more challenging; the low-dimensionality of bump height as a feature simplifies change detection,
as will be shown in Section 4.
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