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a b s t r a c t

In this work we provide theoretical and numerical results regarding optimal designs of
experiments with an emphasis on coupled problems like piezoelectrics and poroelastics.
The work is motivated by the need of identifying parameters for complex problems from
measured data, where it is a priori not clear which data are to choose. We assume a har-
monic excitation of the systems and measurements related to different excitation frequen-
cies. Results of optimal experimental designs under harmonic excitations are reviewed and
adapted correspondingly, e.g., the D-optimality criterion is extended to the case of multiple
fields. The manuscript at hand further reviews techniques to identify parameters and their
statistical properties and discusses the previously derived theory for two examples, one
coming from piezoelectricity, the other from poroelasticity. For these examples, it is ana-
lytically shown that they fit to the previously presented theory. Numerical results dis-
cussing the optimal choice of the fields to measure and finding the optimal excitation
frequencies finalize this work.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In many systems, there are couplings of two or even more physical quantities which are influencing each other. For
instance, in mechatronical systems, different types of sensors and actuators are developed to convert signals from one phys-
ical field into signals of another physical field. Examples are piezo-electrically driven actuators for ultrasound generation,
electro-magnetic transducers, micro-electro-mechanical devices and so on. Also in other engineering disciplines we find
such coupled problems, e.g., thermal-hydro-mechanically coupled systems which dominate the behavior of structures likes
dams or dikes. Generally, the design and analysis of these structures are supported by means of models. A variety of models
has been derived, which depending on the application, are formulated in one, two or even three dimensions. Mostly, the
effects are described by coupled systems of instationary partial differential equations. Depending on the dimension, but also
on the material properties (isotropic or anisotropic), a series of material specific parameters needs to be known in order to
make reliable predictions. This leads to inverse problems which are often ill-posed. The determination of the material
parameters is the content of many works, where generally discrepancies between measured and simulated signals are sys-
tematically reduced by applying techniques of nonlinear optimization or regularizing methods. To organize optimally the
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Design of Experiments (understood as the design of a physical experiment and not the design for a statistical method, as e.g.,
[1,2]), a series of approaches has been developed in literature where mainly all approaches which assume unbiased estima-
tors are based on the Fisher information matrix, see, e.g. [3] for a detailed work on the parameter estimation of distributed
parameter systems. A vital discussion about robustness issues and applicability of model input design for parameter estima-
tion and control of systems is discussed in [4–6]. In many experimental setups, time-harmonic loads are applied to excite the
structures and to measure responses in dependency on the current excitation frequency. A set of responses might then be
used as input for parameter identification activities in frequency domain, e.g., in piezoelectricity [7] or for dispersive dielec-
trics [8]. The questions arising within the inverse (one field) problems formulated in frequency domain are:

� At which frequencies should I excite my system, see, e.g. [9]?
� How many different excitation frequencies should I consider at least?
In a multifield context, an additional question appears.

� How many different field quantities do I need to consider at least?

In the given manuscript we provide answers to all three questions.
For the question about the number of excitation frequencies results have been established in [10–12], where however the

applicability of the methods is proven solely for academic types of problems and ordinary differential equations.
The work in [13] extended previous works on ordinary differential equations to one field partial differential equations,

however not for coupled problems. We go in this work a step ahead and demonstrate applicability to more complex systems
which are mainly characterized by a coupling of two physical quantities. Even though we used simplified representations of
the problems considered, the theory and results can be directly transferred to any PDE which can be solved by numerical
means. Thus the given discussion is no limitation to cases where only analytical formulations are available. Merely, we show
that the theory is indeed applicable by decomposing the solutions. If numerical means are the only possibility to compute
the model input-output relations, sensitivity methods as discussed, e.g., in [14] for dynamical situations are to applied to
obtain the entries in the Fisher matrices. Additionally, the representation of the Fisher information matrix is justified here
firstly with the required rigor by spectral densities of the excitations and derivatives of the Fourier transform of the funda-
mental solutions of the models considered.

The paper is organized as follows: After the introduction we formulate the forward operator related to the given inverse
problems in frequency domain and allow its decomposition into a part corresponding to the transmittance of the problem
and another part related to its excitation. By this, we define the Fisher Matrix as the sum of functions of spectral densities
and by linking it with the Theorem of Caratheodory (Section 2.1) we establish an upper bound for the number of different
excitation frequencies for optimal designs. In subSections 2.3 and 2.4 we reveal optimality criteria and methods which allow
the identification of the parameters for the examples presented in Section 3 and their statistical parameters. Section 3 intro-
duces two important examples of coupled problems. These are piezoelectricity and poroelasticity, which are of high impor-
tance in their respective fields of research, see, e.g., [15–17]. In the analysis we make use of both one-dimensional
fundamental representations of the coupled problems solutions and numerical approximations in higher dimensions.
Numerical examples are given for both, the inverse problems and the related optimal design problems. The paper closes with
an appendix which justifies the representation of the Fisher information matrix in terms of the spectral density and deriva-
tives of the Fourier transform of the fundamental solution.

2. Forward operators and information matrix

We are making the following assumptions: The experimental time for the systems regarded is large and the excitation
signal in time domain allows a spectral representation. Let us assume that the response of a system of coupled field equa-
tions is given by

F : X ! Y ð1Þ
p# Fðp; �xÞ ð2Þ

with X#Rr being the space of model input parameters, Y #CNn the set of measurements, p 2 Rr a vector of real valued mate-
rial parameters of length r. F is the response of the system, depending on the parameters p and excitation frequencies
�x ¼ ðx1; . . .xnÞT . We assume that the recorded values are subjected to normally distributed random noise �i with zero mean
and finite variance, i.e.

yi ¼ Fiðp; �xÞ þ �i; i ¼ 1; . . . ;Nn; ð3Þ

where Nn are the number of measurements. If Fðp; �xÞ is complex valued, than the noise is added independently on both, the
real and imaginary part, with equal variance and zero mean following a normal distribution. According to [18] this yields
complex Gaussian distributed random variables with zero mean and the given variance. Consequently, we assume that
throughout the work there are no correlations between the data, neither for the real and imaginary part nor for observations
from different fields.
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