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A B S T R A C T

The aim of this paper is to provide an efficient frequency-domain method for bifurcation analysis
of nonlinear dynamical systems. The proposed method consists in directly tracking the
bifurcation points when a system parameter such as the excitation or nonlinearity level is
varied. To this end, a so-called extended system comprising the equation of motion and an
additional equation characterizing the bifurcation of interest is solved by means of the Harmonic
Balance Method coupled with an arc-length continuation technique. In particular, an original
extended system for the detection and tracking of Neimark-Sacker (secondary Hopf) bifurcations
is introduced. By applying the methodology to a nonlinear energy sink and to a rotor-stator
rubbing system, it is shown that the bifurcation tracking can be used to efficiently compute the
boundaries of stability and/or dynamical regimes, i.e., safe operating zones.

1. Introduction

Industrial requirements in terms of security, cost reduction and increased performance push designers, manufacturers and
operators to create more and more advanced technological equipment in which nonlinearities are now common. In this context,
understanding and controlling nonlinear effects due to contact, large deflections, links or components such as bearings or friction
dampers is an important issue. Resulting nonlinear systems can exhibit complex dynamical behaviours with specific features such as
multi-solutions for a single value of the system parameters, amplitude or frequency jumps, internal resonances, period-doubling,
quasi-periodic or chaotic motions [1–4]. However, for a given system, the systematic study of all these phenomena and their possible
occurrence is generally out of reach because of the large number of parameters to be considered and the limited available
computational resources. An overall understanding of the system's dynamics can nevertheless be obtained through the computation
of periodic solutions, forced response curves and associated bifurcations.

The literature comprises various numerical methods for the direct computation of periodic solutions which can be classified into
two main categories, namely time domain and frequency domain approaches. The shooting method [5] and orthogonal collocation
[6] which rely on solving a nonlinear boundary value problem are two popular time domain approaches. Orthogonal collocation is
implemented for instance in AUTO [7] and MATCONT [8] softwares. In the frequency domain, the most commonly used method is
certainly the harmonic balance method (HBM) which consists in approximating the unknown state variables by means of truncated
Fourier series. Since nonlinearities cannot be directly computed in the frequency domain, the standard HBM is usually coupled with
the alternating frequency-time (AFT) scheme [9] which computes the nonlinear terms in the time domain and subsequently their
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Fourier coefficients. The AFT scheme is very popular due to its easy implementation, its computational efficiency and its ability to
handle almost any type of nonlinearities. Over the past decades, the HBM has been extended to quasi-periodic solutions [10–13] and
many improvements have been proposed, such as adaptive schemes that improve the performance by selecting only the harmonics of
interest [14,15] as well as methods to handle systems with many distinct states [16] and strong or non-smooth nonlinearities
[17,18]. For the computation of forced response curves, i.e. the following of periodic solutions when a control parameter is varied,
the HBM is coupled with a continuation technique, e.g. the arc-length continuation based on tangent prediction steps and orthogonal
corrections [19,20] or the so-called asymptotic numerical method [21].

In an engineering context, the local stability of periodic solutions is often computed when following the response curve since it
distinguishes between solutions that may or not be experimentally observed. Several algorithms operating either in the time or
frequency domain are available [22,23]. The detection of bifurcations points is more rarely performed. However, their computation
is of prime interest. For instance, a limit point (also called fold bifurcation) indicates a change of stability and is responsible for
amplitude jumps that can lead to significant and possibly dramatic changes in the system response. A Neimark-Sacker (secondary
Hopf) bifurcation corresponds to a change of motion regime and indicates the transition from a periodic to a quasiperiodic motion.

Consequently, the parametric analysis of bifurcations can be used to understand the effects of nonlinear phenomena and to
determine the boundaries of stability and/or dynamical regimes, i.e., safe operating zones. The resulting bifurcation map is an
efficient tool for designers in order to identify the relevant parameters ruling the system's behaviour and to choose appropriate sets
of parameters that lead to optimal runs. A simplified approach for this parametric analysis consists in calculating the whole response
curves for several values of a chosen parameter, and collect all the detected bifurcations. However, this approach is very expensive
and produces unnecessary results since only bifurcation points are of interest. A more efficient approach consists in detecting a
starting bifurcation point for a fixed value of the parameter of interest, then in directly tracking the path of bifurcations while this
parameter is varied.

Two approaches exist for the precise computation of bifurcation points. The first one is based on the use of so-called standard
extended systems and consists in introducing one or more additional equations characterizing the bifurcation. The second approach
relies on minimally extended systems and bordering techniques in which only one scalar function is added. The direct calculation of
limit points of nonlinear equations depending on a parameter was first introduced by Seydel [24,25], Moore and Spence [26] using
standard extended systems. Many authors also utilized this approach for the direct calculation of critical points for post-buckling
finite element problems [27–29]. It was recently combined with HBM by Petrov [30] for the detection of branch point bifurcations,
where two branches of solutions intersect, and branch-switching along curves of periodic solutions. The direct calculation of limit
points by means of minimally extended systems was introduced in [31] and subsequently used and improved by many authors
[32,33]. The computation of Hopf bifurcations for dynamical systems by means of standard extended systems originates from the
work of Jepson [34]. Several variations and improvements have then been developed by Griewank and Reddien [35] or Roose et al.
[36,37] among others. This type of algorithm is frequently used in fluid mechanics to detect instabilities when the Reynolds number
reaches critical values [38]. Such standard extended systems are implemented in AUTO [7] and LOCA [39] softwares. The
computation of Hopf bifurcations by means of minimally extended systems is detailed in [32,40,41]. These minimally extended
systems are implemented in MATCONT [8] software. A comprehensive review of the methods suitable for detecting bifurcations can
be found in [19] while in [42] authors focus on Hopf bifurcations.

The numerical continuation of bifurcation points is much less addressed in the literature. The continuation of paths of limit
points of nonlinear equations having two parameters was first investigated by Jepson and Spence [43] with standard extended
systems. In a mechanical context, it was later used for studying the sensitivity of critical buckling loads to imperfections [44–46]. In
MATCONT, the continuation of codimension-1 bifurcations of dynamical systems is performed by means of minimally extended
systems. In [47], Detroux et al. combined this approach with the HBM for the tracking of limit point, branch point and Neimark-
Sacker bifurcations of large-scale mechanical systems. In this paper, we combine HBM and standard extended systems. We already
used this approach in [48] in the case of limit points. Here, this work is extended to all types of codimension-1 bifurcations. In
particular, we build on the work of Griewank and Reddien [35] in order to propose an efficient algorithm for the computation and
the tracking of Neimark-Sacker bifurcations.

The paper is organized as follows. The formulation of the harmonic balance method for the continuation of periodic solutions is
presented in Section 2. The stability analysis and the characterization of the bifurcations are based on the Floquet exponents
obtained from a quadratic eigenvalue problem as described in Section 3. The extended systems used for the computation of the
bifurcations are then detailed in Section 4, with emphasis on computational issues such as the efficient calculation of the derivatives
involved in the Newton-Raphson iterations. The direct tracking of these bifurcations, i.e., the continuation of bifurcation curves is
addressed in Section 5. The performance of the proposed approach is demonstrated in Section 6 on two nonlinear dynamical
problems: a nonlinear vibration absorber and a nonlinear Jeffcott rotor. Finally, conclusions are drawn in the last section.

2. Equilibrium path

2.1. Harmonic Balance Method

A forced nonlinear dynamical system with n degrees of freedom (DOFs) governed by the following set of equations of motion is
considered
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