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A B S T R A C T

Nonlinear problems have drawn great interest and extensive attention from engineers, physicists
and mathematicians and many other scientists because most real systems are inherently
nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories
and methods have been developed, including Volterra series. In this paper, the basic definition of
the Volterra series is recapitulated, together with some frequency domain concepts which are
derived from the Volterra series, including the general frequency response function (GFRF), the
nonlinear output frequency response function (NOFRF), output frequency response function
(OFRF) and associated frequency response function (AFRF). The relationship between the
Volterra series and other nonlinear system models and nonlinear problem solving methods are
discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model,
Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method
and Adomian decomposition. The challenging problems and their state of arts in the series
convergence study and the kernel identification study are comprehensively introduced. In
addition, a detailed review is then given on the applications of Volterra series in mechanical
engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.

1. Introduction

Nonlinear problems are very common, and have been researched by engineers, physicists, mathematicians and many other
scientists. To model and analyze nonlinear systems and solve related problems, people have carried out extensive studies, and
developed a variety of mathematical theories and methods, among which the Volterra series is one of the most widely used and well-
established methods. It can be traced back to the work of the Italian mathematician Vito Volterra about theory of analytic functional
in 1887 [1]. Then, Norbert Wiener applied his theory of Brownian motion to investigate the integration of Volterra analytic
functional and firstly used it for system analysis in 1942 [2,3]. As a general method for the design and analysis of nonlinear systems,
it came into use after about 1957. Using Volterra series, many nonlinear phenomena could be explained, but it was very complicated,
and could only be applied to the analysis of some relatively simple nonlinear systems. This problem restricted its application in
practical engineering and the progress of the application research was very slow. This situation continued until the 1990s, then,
because of the development and popularization of computer technology, the application of Volterra series has been widely ranged
from aeroelastic systems, biomedical engineering, fluid dynamics, electrical engineering, to mechanical engineering, etc. Especially
during the last ten years, the global scholars have published nearly one thousand SCI papers about the theory and application of
Volterra series, and the number of citations is over ten thousand, which shows the powerful vigor and broad application prospects in
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this research field. Unfortunately, although the number of research papers is very large, hitherto the related research books are only
two or three copies [4–6], and there is still no one review paper which summarizes the related research achievements and status of
Volterra series. These problems restrict the further promotion of Volterra series. In order to let the beginners master Volterra series
faster and better, this paper tries to concisely and comprehensively introduce it, summarize the related research achievements, and
discuss its application prospects.

2. Volterra series

Volterra series is one of the earliest approaches to achieve a systematic characterization of a nonlinear system. It is a powerful
mathematical tool for nonlinear system analysis. Essentially, it is an extension of the standard convolution description of linear
systems to nonlinear systems. Therefore, in order to help people understand the theory better, the convolution integral and its
related concepts in linear systems are taken as references.

2.1. The definition in time domain

If a system is linear and time-invariant, then the linear input-output relation of the system can be represented by the convolution
integral, which is shown as follows,

∫y t h t τ u τ dτ( ) = ( − ) ( )
−∞

+∞

(1)

where, u(t) is the input, y(t) is the output, Eq. (1) can be interpreted as Duhamel integral, and the system is determined uniquely by
the impulse response function h(t).

Implementing the Fourier transform at both the left and right sides of Eq. (1), the linear frequency domain relational expression
between the system input and output can be obtained,

Y ω H ω U ω( ) = ( ) ( ) (2)

where U(ω), Y(ω), H(ω) are the Fourier transform of u(t), y(t), h(t), respectively, H(ω) is also known as the frequency response
function (FRF). For a linear system, H(ω) or h(t) includes all the information in the system.

In contrast, for nonlinear continuous time-invariant systems with fading memory, under zero initial conditions, if the energy of
input signal u(t) is limited, the system response can be represented by Volterra series [5,7–9]. It is an extension of Eq. (1) for linear
systems to nonlinear systems, which can be represented as,
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where, h1(τ)，h2(τ1,τ2), …, hn(τ1,…,τn) are each order Volterra kernel functions, which are the extensions of the impulse response
function for the linear system to the nonlinear system. In addition, generally, the equilibrium position of the system is set to be zero.
This means that the DC term y0 equals zero [10] Eq. (3) reveals that, if all the Volterra kernel functions except the first order are
zero, the system degenerates into a linear system.

For the discrete nonlinear time invariant system, using Volterra series, it can be represented as [11–14],
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where, u(k), y(k)∈R, are the system input and output, respectively, hn(m1,…,mn) is the nth discrete Volterra kernel function.
A significant characteristic of the Volterra kernel function is the symmetry, which can be represented as,
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Nomenclature

FRF frequency response function
GFRF general frequency response function
NOFRF nonlinear output frequency response function
OFRF output frequency response function
AFRF associated frequency response function
ALE associated linear equation
NARMAXnonlinear autoregressive moving average model

with exogenous inputs
HBM harmonic balance method

hn(τ1,…,τn) the nth Volterra kernel function
H ω ω( , …, )n n1 the nth orderGFRF
Gn(ω) the nth order NOFRF
Un(ω) the Fourier transform of the system input u(t)

raised to nth power
Gn[x(t)] the nth Wiener G functional
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OFRF
Kn the nth nonlinear gain constant in AFRF
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