ARTICLE IN PRESS

Mechanical Systems and Signal Processing **E** (**BEED**) **BEE-BEE**

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks

Bin Bao, Daniel Guyomar, Mickaël Lallart*

Univ. Lyon, INSA-LYON, LGEF, EA682, F-69621 Villeurbanne, France

ARTICLE INFO

Article history: Received 12 January 2016 Accepted 16 May 2016

Keywords: Periodic structure Wave propagation Band gap mechanisms Vibration reduction Synchronized switch damping

ABSTRACT

Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RLshunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A periodic structure is composed of an assembly of identical elements connected in a repeating pattern. Examples of such structures can be found in many practical applications. Typically, they include rods [1,2], beams [3,4] or plates [5,6]. Due to their periodic nature, these structures may exhibit particular dynamic characteristics that make them acting as mechanical

* Corresponding author.

E-mail address: mickael.lallart@insa-lyon.fr (M. Lallart).

http://dx.doi.org/10.1016/j.ymssp.2016.05.021 0888-3270/© 2016 Elsevier Ltd. All rights reserved.

Please cite this article as: B. Bao, et al., Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks, Mech. Syst. Signal Process. (2016), http://dx.doi.org/10.1016/j. ymssp.2016.05.021

ARTICLE IN PRESS

Nomenclature

		v_{b}	Р
I	inductance	s ^E	n
C _o	capacitance of the P7T		e
U U	voltage on the PZT	ε^{T}	e
Udiff	voltage difference between two PZTs	<i>d</i> ₃₁	р
t:	duration of the closed state of the switch	E_3	e
-	connected to one PZT	D_3	e
tia	duration of the closed state of the switch	σ	S
·iu	connected between two PZTs		р
0.	electrical quality factor of the switch con-	T_{b1}	Î
ν.c.	nected to one PZT	T_{n1}	lo
04	electrical quality factor of the switch con-	S_1	S
<i>Q</i> II	nected between two PZTs	t_n	tl
V_{M}	piezoelectric voltage of the PZT before the	t_b	tl
111	inversion process	$\overline{\phi}(x)$	a
Vm	piezoelectric voltage of the PZT after the in-		S
- 111	version process	u_3	v
V_{Md}	voltage difference between two PZTs before	-	d
iviu	the inversion process	x_c	n
V_{md}	voltage difference between two PZTs after the	х	Т
· ma	inversion process	G	S
γ	inversion coefficient of the switch connected	E _b	e
•	to one PZT	E_p	e
Yd	inversion coefficient of the switch connected	E_e	e
,	between two PZTs		ti
и	displacement of the structure	Mbending	b
ü	velocity of the structure	w_W	v
M_k	dynamic mass	I_b	S
K _E	short-circuit stiffness		S
C_L	structural damping	I_p	S
α	force factor		S
F	external force	Ie	e
$C_{equivaler}$	nt equivalent capacitance of two PZTs		b
ω	angular frequency	I_s	=
u_M	amplitude of the displacement of one PZT on		r
	the structure	U_s	S
u_{Md}	amplitude of the displacement difference be-	T_k	k
	tween the displacement of one PZT and the	W_e	v
	displacement of the other PZT on the structure		lo
h(t)	crenel function	Qs	S
I(t)	current flowing through the switch connected	1	le
	to one PZT	A_c	С
$I_{diff}(t)$	current flowing through the switch between	ho	n
	two PZTs on the structure	q,m	d
$g(\omega)$	sin (ωt) in the frequency domain		le
E_p^E	elastic moduli of the PZT in short circuit	Q	e
Ź	electrical impedance of the shunting network	L_p	le
k ₃₁	electromechanical coupling coefficient	п	n
N_g	number of interleaved unit cells	$p_{1,2,3,4}$	S
Ň	number of primitive periodic cells		0
1/0	transverse shear strain constant		e

Yh	Young modulus of the substrate
1/1	Poisson's ratio of the substrate
s ^E	mechanical compliance tensor of the piezo-
5	electric material under constant electric field
c^T	electrical permittivity under constant creetine field
e d	piozoologtrig gharge constant
u_{31}	piezoelectric charge constant
E_3	electric field intensity along x_3 direction
D_3	electrical displacement along x_3 direction
σ	sign of the piezoelectric constant which de-
	pends on the polarization of the material
T_{b1}	longitudinal stress of the substrate
T_{p1}	longitudinal stress of the PZT
<i>S</i> ₁	strain along x_1 direction
t_p	thickness of the PZT
t_{b}	thickness of the pure beam
$d \tilde{b}(x)$	angle of rotation of the normal of the mid-
+()	surface of the beam
11-	vertical deflection of the neutral axis in the x_2
uz	direction
v	neutral axis
Λ _C	Timoshanka shaar coefficient
к С	shoon modulus
G	shear modulus
E_b	elastic modulus of the substrate
E_p	elastic modulus of the PZI
E _e	equivalent elastic modulus of the beam sec-
	tion with the PZT
M _{bending}	bending moment
w_W	width of the bending beam
I _b	second moment of area of the pure beam
	substrate's cross-section
I_p	second moment of area of the PZT's cross-
	section
Ie	equivalent second moment of area of the
	beam section with the PZT
Is	$=I_b$ referring to the substrate section or $=I_e$
	referring to the beam section with the PZT
Us	strain energy
T_k	kinetic energy
Ŵe	work produced by the external transversal
t	load
0.	shear force
1	length of minimal finite beam element
l A	cross-sectional area of the substrate
<i>A</i> _C	mass density of the material
p am	distributed forces and moments along the
<i>q,m</i>	longth L rospectively
0	eligiti i, lespectively
Ų,	electric charge on one PZ1
L_p	length of piezoelectric beam element
п	number of finite beam elements
$p_{1,2,3,4}$	signs of piezoelectric constant which depend
	on the direction of polarization of the piezo-
	electric patches 1,2,3,4 in the periodic cell

filters for traveling waves [7–10]. Specifically, waves can propagate over the surface of periodic structures within particular frequency bands called pass bands, and within other frequency regions called stop bands, propagative wave may be attenuated in amplitude and/or shifted in phase. The bandwidth and location of those pass bands/stop bands are influenced by properties such as periodic element length, stiffness, acoustic impedance ratio, Young's modulus ratio and thickness. When

Please cite this article as: B. Bao, et al., Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks, Mech. Syst. Signal Process. (2016), http://dx.doi.org/10.1016/j. ymssp.2016.05.021

2

Download English Version:

https://daneshyari.com/en/article/4977258

Download Persian Version:

https://daneshyari.com/article/4977258

Daneshyari.com