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a b s t r a c t

The purpose of this article is to investigate the changes in the magnitude of natural fre-
quencies and their associated modal shapes of Timoshenko beamwith respect to different
system design parameters. This beam includes an intermediate extended eccentric rigid
mass mounted on two elastic segments. The equilibrium equations which govern the
transverse and rotational motions are derived. The application of the developed system
frequency equation is demonstrated by several illustrative examples. Several end and
intermediate conditions are considered. The influence of, rotary inertia, shear deforma-
tion, axial load, eccentric mass and elastic segments step ratio on the system natural
frequencies and mode shapes are conducted. Several sets of new results are presented.
Comparison of the present model results with the experimental data for shaft integrated
with intermediate rigid mass demonstrates the accuracy of the analysis in practical ap-
plications. The present model is valid for several industrial applications, such as me-
chanical, structural, naval and for wider range of applications.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Timoshenko [1] was the first who presented the vibration problem of beams with rotary inertia and shear deformation
effect. Huang [2] investigated the frequency equations and normal modes of free flexural vibrations of uniform beams
including the effect of shear deformation and rotary inertia for classical end conditions. Sato [3] investigated the governing
equations for vibration and stability of a Timoshenko beam subjected to an axial load using Hamilton’s principle. Farghaly
[4] derived an exact frequency equation for uniform cantilever Bernoulli–Euler beam with an elastically mounted non
concentrated tip mass. Farghaly and Shebl [5] studied the vibration and stability of axially loaded Timoshenko beam car-
rying end masses of finite length and elastically supported against rotation and translations.

Kopmaz and Telli [6] considered the transverse vibration of a system consisting of a rigid body carried by two uniform
beams of different flexural rigidity, length and pinned at the beam ends. The center of mass of this rigid body is located at its
middle. Naguleswaran [7], Banerjee and Sobey [8] and Ilanko [9] presented three comments on the discontinuity conditions
between the beam and rigid mass discussed by Kopmaz and Telli [6]. In addition Kopmaz and Telli illustrated through their
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author's reply [10] some interesting points which were carried out and very useful corrections were reported. Su and
Banerjee [11] investigated the free vibration of frame works consisting of two-part beam-mass system. An exact dynamic
stiffness matrix for the frame elements was developed from the free vibration theory of Bernoulli–Euler beam. Ilanko [12]
presented how the transcendental dynamic stability functions can be used to determine the natural frequencies of a simply
supported beam system carrying a rigid body satisfying the partial differential equation governing the flexural motion of
Bernoulli–Euler beams exactly. Naguleswaran [13] investigated the transverse vibration of stepped Bernoulli–Euler beam
carrying a non-symmetrical rigid body in-span. The center of mass of the body was on the neutral axis of the beam and
within or outside the axial length of the body.

Wu and Chen [14] presented a modified lumped-mass transfer matrix method (LTMM) so that one may easily determine
the natural frequencies and the corresponding mode shapes of a multi-step Timoshenko beam with various boundary
conditions and carrying various concentrated elements with eccentricity of each lumped mass. Magrab [15] used the Laplace
transformation method to obtain a solution for a Timoshenko beam mounted on elastic foundation with several combi-
nations of discrete in-span attachments and with several combinations of attachments at the boundaries. The attachments
include translation and torsion springs, masses and undamped single degree of freedom system. Recently, Lin and Wang [16]
presented a method to determine the exact natural frequencies and mode shapes of hybrid beam composed of multiple
elastic beam segments and multiple rigid bodies. Each rigid body connected with two adjacent elastic beam segments, has
its own mass and rotary inertia and supported by a translational spring and/or rotational springs. Magrab [17] through his
textbook, chapter 3 discussed the mathematical equations for Bernoulli–Euler beam with an in-span rigid extended mass.
Graphical results for the variation in the modal frequencies and their associated modal shapes were presented in [17]. Very
recently, the exact free vibration of multi-step Timoshenko beam system with several attachments including two degree of

Nomenclature

A cross-section area of the beam.
a, b polynomial roots
c c1, 2 distance from k6 and k5 to points of

attachment
* *c c,1 2 c1/L, c2/L respectively

e distance between the mass center of gravity
and the point of attachment

*e ratio defined as e L/ .
E Young's modulus of elasticity
f frequency (Hz)
G shear modulus of rigidity
I moment of inertia of the beam cross section

about the neutral axis.
Jr rotational moment of inertia of the inter-

mediate mass.
*Jr ratio ( )ρJ A L/r 1 1

3

́k shear deformation shape coefficient
ϕk, elastic stiffness.

L length of the beam (between points 1 & 4).
*Lr ratio ( )L L/r .

mt total mass of the beam.
mr intermediate mass.

*mr Non-dimensional intermediate mass mr

/ρ A L1 1 .
P axial load.

*p 2 axial load parameter ( PL E I/2
1 1).

*r1
2 rotary inertia parameter ( )I A L/1 1

2 .
*s1

2 shear deformation parameter ( * ́E r G k/1 1
2

1 1).
Y non-dimensional lateral deflection.

ψx y, , system co-ordinate of the beam.
* *Z Z,1 4 non-dimensional stiffness parameters defined

as k L E I/1
3

1 1 and k L E I/4
3

1 1 respectively.
* *Z Z,5 6 non-dimensional stiffness parameters defined

as k L E I/5
3

1 1 and k L E I/6
3

1 1 respectively.

γ*
r set of non-dimensional terms defined as in Eq.

(9d).
γ γ* *,1 2 set of non-dimensional terms defined as in Eq.

(9a, f).
δ δ,1 2 parameter defined as in Eqs. (A6 a, b)
ϵ*r set of non-dimensional terms defined as in

equation (9 c).
ϕ1, ϕ4 end rotational spring stiffness.
ϕ5, ϕ6 rotational spring stiffness.
Φ*1 , Φ*4 non-dimensional rotational spring parameters

defined as ϕ L E I/1 1 1 and ϕ L E I/4 1 1 respectively.
Φ*5 , Φ*6 non-dimensional rotational spring parameters

defined as ϕ L E I/5 1 1 and ϕ L E I/6 1 1 respectively.
λ*4 frequency parameter ( )ρ ωA L E I/1 1

4 2
1 1 .

ω circular frequency (rad/s).
ψ slope due to bending.
ΨL non-dimensional slope due to bending.

μ parameter defined as L L/1 .
ν Poisson’s ratio.
ρ mass density of the beam material (kg/m3).
θ*r set of non- dimensional terms defined as in

equation (9 e).
θ θ* *,1 2 1st set of non- dimensional terms defined as in

equation (9 b, g).
′ 1st derivative w.r.t. x or ζ .
′′ 2nd derivative w.r.t. x or ζ .
′′′ 3rd derivative w.r.t. x or ζ .
′′′′ 4th derivative w.r.t. x or ζ .
C Clamped (fixed) support.
F Free support.
P Pinned (hinged) support.
S Slide (guided) support.
BET Bernoulli–Euler theory.
TBT Timoshenko beam theory.
vs 10 E�12.
vl 10 Eþ12.
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