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a b s t r a c t 

In this paper, multi-dimensional extension and additional properties of already proposed extraction 

methods of buried one-dimensional signals in noise are developed. It is shown that heavy denoising 

uses no a-priori information, works without averaging or smoothing in the time or frequency domain 

with computation times much lower than those needed by ensemble averaging operations. Extraction is 

achieved independently of the nature of noise and locations of its spectral extent. Heavy denoising per- 

formances, comparative results with wavelets and other denoising algorithms, are illustrated via buried 

two-dimensional signals and images in noise. Proposed restoration of buried images in mixed sources 

of noise is able to preserve image information carried by fine structure, edges and texture. This ability 

opens novel perspectives for image restoration. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Heavy denoising or extraction from noise of multidimensional 

signals has significant applications in many areas of different sci- 

ences (see, e.g., [1–10] ). Particularly, buried two-dimensional sig- 

nals in image processing remains to date an important challenge 

since images are often corrupted by various natures of noise in 

different systems as, for example, acquisition and transmission de- 

vices. They also can be taken in poor conditions. Much work is 

devoted to the subject and no attempt is made in our reference 

section to present an exhaustive list of various proposed denoising 

algorithms and their corresponding merits (see, e.g., [11–15] ). 

The task of image denoising is to reduce noise while preserv- 

ing image information. Most of image denoising algorithms are 

based on the model of noise and all of them uses a global or lo- 

cal generic image smoothness [11] . This last point represents the 

principal drawback of all existing algorithms (see, for example, var- 

ious 2D wavelet denoising algorithms with their thresholding and 

shrinking rules together with filtering methods [16,17] ) since no 

difference is made between noise and small buried details in the 

noisy image. Elimination of noise together with these small details 

creates various distortions indexed in lists of denoising artifacts. 
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One notes that many methods [18] have been investigated in perti- 

nent literature and one finds that if these algorithms performs very 

well when their intrinsic hypothesis are met, their failed in many 

real-world situations due to their level of sophistication, feature 

settings and specific models. Moreover, to the best of our knowl- 

edge (see, e.g., [19–21] ), any of the proposed algorithms extracts 

buried details (fine structure, edges and texture) in noisy images 

independently of the nature of noise and extension of its spectral 

support. 

We proposed in [22] two extraction methods applied to buried 

“one-dimensional” signals that work independently of the nature 

of noise (white or colored, Gaussian or not) and its spectral sup- 

port. This heavy denoising or extraction from noise does not use a- 

priori information neither on the signal to be extracted nor on the 

nature of noise. No averaging or smoothing in the direct time or 

dual frequency domain is performed. Moreover, computation times 

of the two proposed denoising methods are much lower than those 

needed by ensemble averaging operations to achieve comparable 

variance reduction of noisy spectral estimates. It is crucial to no- 

tice that denoising methods extract clean power spectral estimates 

of buried signals in noise as briefly summarized hereafter: 

1) The first method, called MFED (Modified Frequency Extent De- 

noising), works in invariant observation space (one realiza- 

tion). It is based on increasing the sampling frequency of 
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continuous-time signals, transforming and windowing obtained 

spectra. Covariance of white noisy spectral estimates (Gaus- 

sian or not) decreases as the square of over-sampling factors 

whereas covariance of colored noise spectral estimates vanishes 

within the signal bandwidth. 

2) The second method, called CFED (Constant Frequency Extent 

Denoising), works in modified observation space (collection of 

realizations). Here the signal-to-noise ratio is increased by in- 

creasing paving in the observation space, transforming and ap- 

plying decimation to obtained sample spectrum. Covariance of 

white and/or colored noisy spectral estimates (Gaussian or not) 

is reduced proportionally to collected processes. 

Application procedures, performances of proposed methods and 

comparative results with other denoising techniques (modified 

periodogram method, bispectrum estimation and wavelet de- 

noising) are reported in [23] . 

In this paper, proposed extension of above results to multi- 

dimensional buried signals and images is motivated by, 

1) citations of one-dimensional observations [22,23] in pertinent 

literature (see, e.g., [24–27] ), 

2) the necessity to provide additional properties demonstrating 

ability of denoising methods to eliminate cross-terms appear- 

ing in power spectral density computations, 

3) the opportunity to propose the theoretical frame of image/video 

denoising, 

4) implementation of a novel restoration method of buried images 

in mixed sources of noise. 

Section 2 specifies some definitions and notations suitable to 

multi-dimensional extension, whereas Sections 3 and 4 , use 

these notations to develop multi-dimensional MFED and CFED 

with above mentioned additional properties. For the sake of il- 

lustration, extraction performances of buried two-dimensional 

signals and images are discussed in Section 5 . A novel restora- 

tion method of buried images in mixed sources of noise is im- 

plemented and its performance compared to most used algo- 

rithms. In order to avoid a lengthy report, video denoising with 

its specific notations, definitions and concepts can be addressed 

in a forthcoming work. 

2. Definitions and notations 

2.1. Signal representation 

Let �( f ) be the N th dimensional bandpass spectrum of the 

zero-mean real N th dimensional signal s (t ) defined by, 

�(f ) = 0 , (f ) min ≥ | f | ≥ (f ) max , (1) 

where ∀ k = 1 , 2 , · · · , N , ( f k ) min ≥ | f k | ≥ ( f k ) max are bounds of 

spectral supports of �( f k ). 

Let us add to s (t ) , an N th dimensional zero-mean wide-sense 

real stationary noise b(t ) to form the process, 

z(t ) = s (t ) + b(t ) . (2) 

Finite observation of z ( t ) in the interval [0, T] available at the out- 

put of low-pass filters of cut-off frequencies (f ) max yields, 

z T (t ) = 

{
b T (t ) + s T (t ) , t ∈ [ 0 , T ] 
0 , otherwise . 

(3) 

Observation intervals are so that T = [ T 1 , · · · , T k , · · · , T N ] where 

T k ( f k ) max � 1 . 

2.2. Multi-dimensional sample power spectral density (SPSD) 

By considering the instants t n = n / f e where f e ≥ 2 (f ) max rep- 

resent sampling frequencies with N = Tf e , we can define the N th 

dimensional discrete-time process z ( n ). Given z ( n ), we form the es- 

timate, 

�( f , f e , T ) = 

∣∣∣∣ 1 ∏ N 
k =1 T k 

DFT [ ND ] (z(n )) 

∣∣∣∣2 

, (4) 

where f and f e are defined above. The subscript in DFT [ ND ] (z(n )) 

denotes the N th dimensional Discrete Fourier Transform of z ( n ). 

For the sake of clarity, we let the estimate �(f , f e , T ) depending 

explicitly on : f, f e and T . This estimate is evaluated at f = m / T = 

[ m 1 /T 1 , · · · , m k /T k , · · · , m N /T N ] where m k = 0 , · · · , N k − 1 and k = 

1 , · · · , N . 

Since no averaging is performed in the time or frequency do- 

main then (4) defines multidimensional Sample Power Spectral 

Density “( N −SPSD)” of the process z(n ) . 

3. Multi-dimensional MFED 

Here, denoising procedure extends analysis frequency ranges of 

one realization of the multi-dimensional process observed in [ 0 , T ] . 

This is termed “Modified Frequency Extent Denoising”. We de- 

rive hereafter spectral representations �(f , f e , T ) of the signal and 

�(f , f e , T ) of noise as a function of over-sampling factors B . For 

easy reference, we recall pertinent results of [22] as computations 

proceed. 

3.1. Spectral representation of noise 

Let us represent �(f , f e , T ) by the N th dimensional matrix of 

coefficients, 

L = { c 0 , c 1 , · · · , c N −1 } . (5) 

We recall that for N = 1 (one-dimensional case, p.2466 of [22] ), L = 

{ c 0 , · · · , c N−1 } . 
Now, given B = [ B 1 , B 2 , · · · , B N ] , we over-sample z ( t ) with Bf e . 

Obtained 

S = { r 0 , r 1 , · · · , r BN −1 } . (6) 

For N = 1 (one-dimensional case), S reduces to S = { r 0 , · · · , r B (N−1) } 
and it is then decomposed into N sub-sequences { S 0 , · · · , S N−1 } , 
Here also, the N th dimensional matrix, S , as given by (6) , can be 

decomposed into N sub-matrixes as follows, 

S = [ S 0 , · · · , S N −1 ] , (7) 

where explicit writing of, S , as given by (7) , yields, 

S = [ S 0 ···0 , S 0 ···1 , · · · , S 0 ···0 B 1 (N 1 −1) ;
S 0 ···0 B 1 (N 1 −1) , S 0 ···1 B 1 (N 1 −1) , · · · , S 0 ···B 2 (N 2 −1) B 1 (N 1 −1) ; · · · ;
S 0 B N−1 (N N−1 −1) ···B 1 (N 1 −1) , S 1 N N−1 (B N−1 −1) ···B 1 (N 1 −1) , · · · , 

S B N (N N −1) N N−1 (B N−1 −1) ···B 2 (N 2 −1) B 1 (N 1 −1) ] , 

Each sub-matrix, S m 

, has the set of coefficients, 

S m 

= { r mB , r mB + 1 , · · · , r (m + 1 ) B −1 } , 
where m = [ m 1 , m 2 , · · · , m N ] and m k = 0 , 1 , · · · , N k − 1 for k = 

1 , 2 , · · · , N . Now, sub-spectra written as a function of coefficients 

r mB yield, 

S m 

= 

∑ B −1 

p = 0 r mB + p δ[ f − ( Bm + p ) / T ] , (8) 

where δ[ f ] is the N th dimensional unit impulse function. 

On the other hand, the matrix L, as given by (5) , can similarly 

be decomposed into N sub-matrixes, 

L = [ L m 

] , 

where, 
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