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a b s t r a c t 

Recently, based on restricted isometry property (RIP), some sufficient conditions for exact support recov- 

ery with simultaneous orthogonal matching pursuit (SOMP) algorithm have been proposed when mea- 

surement matrices are different. In this paper, in the noiseless case, one sufficient condition for exact 

support recovery with SOMP is presented to improve the existing results. By using a counter example, in 

the noiseless case, an open problem presented in (Xu et. al , 2015) is solved. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The multiple measurement vectors (MMV) problem aims to re- 

cover, from sets of compressed measurements, unknown sparse 

matrices with nonzero entries restricted to a subset of rows. Such 

problems arise in neuromagnetic imaging [1] , source localization 

[2] , and equalization of sparse-communication channels [3] . The 

aim of the MMV problem is to recover the support of { x � } � ∈ � from 

the observations 

y � = Ax � , � = 1 , 2 , · · · , L, (1) 

where � := {1, 2, ���, L } and A ∈ R 

m ×n . We define the support of 

{ x � } � ∈ � as supp ({ x � } � ∈ �) = 

⋃ 

� ∈ �
{ i | x � (i ) � = 0 } , where x � ( i ) denotes 

the i th entry of x � [4] . 

There have been many studies on the MMV problem associated 

with (1) . In terms of theoretical guarantees, J. Chen et al. [5,6] an- 

alyzed the worst-case performance of MMV problem. R. Gribonval 

et al. [7,8] provided the average-case analysis for MMV. J. Gai et al. 

[9] presented a high-performance recovery method for MMV. In 

[10] , simultaneous orthogonal matching pursuit (SOMP) was pro- 

posed. In [11] , several exact recovery criteria ensuring that SOMP 

identifies the support of { x � } � ∈ � have been presented. J. Determe 

et al. [12] provided a novel lower bound for each iteration of SOMP. 

J. Determe et al. [13] presented a theoretical analysis of SOMP op- 

erating in the presence of Gaussian additive noise. 
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The works mentioned above discussed MMV model when the 

measurement matrices ({ A � } � ∈ �) for each sparse signal are iden- 

tical. The authors in [14,15] investigated the case of different A � ∈ 

R 

m ×n that is common in the practical applications. For example, 

to reduce the cost at the nodes implementing compressed sensing 

(CS) operation, it is advisable to generate A � independently with- 

out communication among them [16–18] . Recently, under the case 

of different A � , in the noisy case, Xu et. al [18] researched the MMV 

problem using SOMP. 

One of the most commonly known tool is the restricted isome- 

try property (RIP, [20] ). A matrix A satisfies RIP of the order K if 

(1 − δ) ‖ h ‖ 

2 
2 ≤ ‖ Ah ‖ 

2 
2 ≤ (1 + δ) ‖ h ‖ 

2 
2 (2) 

for all K -sparse vector h with the restricted isometry constant (RIC) 

δK ∈ (0, 1). 

In this study, we mainly recover the support of { x � } � ∈ � from 

the following problem by SOMP in the noiseless case. 

y � = A � x � , ∀ � ∈ �. (3) 

Section 2 describes SOMP and related quantities. In Section 3 , we 

show that if A � ( � ∈ �) satisfies the RIP of order K + 1 with 

δK+1 < 

1 √ 

LK + 1 

, (4) 

then SOMP can recover the support of { x � } � ∈ � in K iterations. Our 

result (4) is unrelated to the value of { x � } � ∈ �. Furthermore, in the 

noiseless case, for any given positive integer K and any 1 √ 

K+1 
≤ δ < 

1 , there always exists a matrix A satisfying the RIP with δK+1 = δ
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for which SOMP fails to recover the support of { x � } � ∈ � in K itera- 

tions. We conclude the paper in Section 4 . Most of the technical- 

ities are reported in Section 5 to simplify the presentation in the 

core of the paper. 

Now we give some notations. Let � := {1, 2, ���, n } and � := {1, 

2, ���, L }. Scalars are written as lowercase letters, e.g., d . We de- 

note vectors by boldface lowercase letters, e.g., x , and matrices as 

boldface uppercase letters, e.g., Z . For a vector ensemble { x � } � ∈ �, 

x � ( i ) means the i th entry of x � . { A � } � ∈ � denotes a matrix ensem- 

ble. A � , � is the matrix containing the columns of A � indexed by 

�. Similarly, x � , � is the vector containing the entries of x � indexed 

by �. Let P �, � = A �, �A 

† 
�, �

and P 

⊥ 
�, �

= I − P �, � denote the orthogo- 

nal projection operator onto the column space of A � , � and its or- 

thogonal complement, respectively. Let Z 

′ denote the transpose of 

Z ∈ R 

n ×L . z � is the � th column of Z and z � ( i ) also denotes ( i , � )- 

entry of Z . ‖ z � ‖ 1 = 

∑ n 
i =1 | z � (i ) | and ‖ z � ‖ 2 = 

√ ∑ n 
i =1 (z � (i )) 2 . Z � is 

the matrix containing the columns of Z indexed by �. The cardinal- 

ity of a finite set � is denoted by | �|. The support of { x � } � ∈ � is de- 

noted by supp({ x � } � ∈ �), where supp ({ x � } � ∈ �) = 

⋃ 

� ∈ �
{ i | x � (i ) � = 0 } . 

2. Problem formulation 

Assume that � := supp ({ x � } � ∈ �) and | �| = K. The SOMP algo- 

rithm [18] is listed in Algorithm 1 . 

Algorithm 1 The SOMP algorithm [18] . 

Input: { y � } � ∈ �, { A � } � ∈ �, and K 

Initialization: r 0 � = y � (� ∈ �) , �0 = ∅ , and k = 0 

1: Repeat until “stopping criterion” is met 

2: k ← k + 1 

• Match step: z k � = A 

′ 
� r 

k −1 
� 

for ∀ � ∈ �

• Identification step: i k = arg max i 
∑ L 

� =1 | z k � (i ) | . If multiple max- 

ima exist, choose only one arbitrarily. 

• Merge step: �k = �k −1 
⋃ { i k } 

• Update step: 

x k � = arg min u : supp (u ) ⊆�k ‖ y � − A � u ‖ 2 for ∀ � ∈ �

r k � = y � − A � x 
k 
� for ∀ � ∈ �

3: End Repeat 

Output: { x k � } � ∈ � and the recovered support �k 

In the (k + 1) th (0 ≤ k < K ) iteration, we begin with the esti- 

mated support �k at iteration k . The discussion below demon- 

strates the generation of �k +1 [19] . 

In the update step of Algorithm 1 , we need to solve a least 

square problem, for � ∈ �, one has 

r k � = P 

⊥ 
�, �k y � 

(a ) = P 

⊥ 
�, �k A � x � 

(b) = P 

⊥ 
�, �k A �, �\ �k x �, �\ �k , (5) 

where ( a ) follows from (3) , ( b ) follows from � = supp ({ x � } � ∈ �) and 

the definition of P 

⊥ 
�, �k 

. When k = 0 , �k = �0 = ∅ . Then the orthog- 

onal projector becomes an identity matrix. 

In the matching step, we have 

z k +1 
� = A 

′ 
� r 

k 
� = A 

′ 
� P 

⊥ 
�, �k y � = A 

′ 
� (P 

⊥ 
�, �k ) 

′ P 

⊥ 
�, �k y � 

= A 

′ 
� (P 

⊥ 
�, �k ) 

′ P 

⊥ 
�, �k A �, �\ �k x �, �\ �k . (6) 

So, in the identification step of Algorithm 1 , according to [18] , 

one has 

L ∑ 

� =1 

| z k +1 
� (i ) | = 0 , ∀ i ∈ �k . (7) 

Therefore, one has [18] 

arg max 
i 

L ∑ 

� =1 

| z k +1 
� (i ) | / ∈ �k , | �k | = k, (8) 

i.e., SOMP will choose a different index from � := {1, 2, ���, n } in 

each iteration. 

3. RIP analysis of SOMP 

In this section, to improve the existing results and solve the 

open problem presented in [18] , in the noiseless case, we will 

present one sufficient condition for exactly recovering the support 

of { x � } � ∈ � with SOMP in K iterations. 

3.1. Preliminary 

Let �k denote the estimated support at iteration k . For simplic- 

ity, denote 

Z 

k +1 = [ A 

′ 
1 r 

k 
1 ︸︷︷︸ 

z k +1 
1 

A 

′ 
2 r 

k 
2 ︸︷︷︸ 

z k +1 
2 

· · · A 

′ 
L −1 r 

k 
L −1 ︸ ︷︷ ︸ 

z k +1 
L −1 

A 

′ 
L r 

k 
L ︸︷︷︸ 

z k +1 
L 

] ∈ R 

n ×L (9) 

for 0 ≤ k < K . z k +1 
� 

is the � th column of Z 

k +1 . In other words, z k +1 
� 

gathers the product of the transpose of the � th measurement ma- 

trix A � and the � th residual r k � at iteration k . In that sense, each 

row of Z 

k +1 corresponds to a particular support index and will de- 

termine whether that particular index will be picked or not. 

Let 

X 

k +1 = [ x 1 , �\ �k x 2 , �\ �k · · · x L, �\ �k ] ∈ R 

(K−k ) ×L , (10) 

and 

B 

k +1 = [ P 

⊥ 
1 , �k A 1 x 1 ︸ ︷︷ ︸ 

b k +1 
1 

P 

⊥ 
2 , �k A 2 x 2 ︸ ︷︷ ︸ 

b k +1 
2 

· · · P 

⊥ 
L, �k A L x L ︸ ︷︷ ︸ 

b k +1 
L 

] ∈ R 

m ×L (11) 

for 0 ≤ k < K . b 

k +1 
� 

= P 

⊥ 
�, �k 

A � x � = P 

⊥ 
�, �k 

A 

�, �\ �k x �, �\ �k is the � th col- 

umn of B 

k +1 for � ∈ �. In that sense, b 

k +1 
� 

is the residual at itera- 

tion k corresponding to the � th measurement vector. 

The following lemmas are useful in our analysis. 

Lemma 1. [21] If A satisfies the RIP of orders k 1 and k 2 with k 1 ≤ k 2 , 

then δk 1 
≤ δk 2 

. 

Lemma 2. [22 , 23] Suppose that supp (x ) = S. Let set S satisfy 

| S ⋂ 

�| ≥ 1 . If A satisfies the RIP of order | S ⋃ 

�| with constant 

δ| S ⋃ 

�| , then 

(1 − δ| S ⋃ 

�| ) ‖ x S\ �‖ 

2 
2 ≤ ‖P 

⊥ 
�Ax ‖ 

2 
2 = ‖P 

⊥ 
�A S\ �x S\ �‖ 

2 
2 

≤ (1 + δ| S ⋃ 

�| ) ‖ x S\ �‖ 

2 
2 . 

Lemma 3. As defined in (9) , (10) and (11) , we have 

‖ (Z 

k +1 ) ′ 
�\ �k ‖ F ≥ 1 

‖ X 

k +1 ‖ F 

‖ B 

k +1 ‖ 

2 
F , (12) 

where (Z 

k +1 ) ′ 
�\ �k 

(0 ≤ k < K ) is the matrix containing the columns of 

(Z 

k +1 ) ′ indexed by ���k , i.e., the rows of Z 

k +1 indexed by ���k . 

The proof of Lemma 3 is given in Section 5.1 . 

Lemma 4. To simplify the notation, for given j ∈ �c , we define 

αk +1 := −
√ 

L (K − k ) + 1 − 1 √ 

L (K − k ) 
(13) 

and H 

k +1 ∈ R 

n ×L with 

h 

k +1 
� = αk +1 ‖ X 

k +1 ‖ F 

z k +1 
� ( j) √ ∑ L 

� =1 (z k +1 
� ( j)) 2 

e j (14) 



Download English Version:

https://daneshyari.com/en/article/4977342

Download Persian Version:

https://daneshyari.com/article/4977342

Daneshyari.com

https://daneshyari.com/en/article/4977342
https://daneshyari.com/article/4977342
https://daneshyari.com

