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Recently, based on restricted isometry property (RIP), some sufficient conditions for exact support recov-
ery with simultaneous orthogonal matching pursuit (SOMP) algorithm have been proposed when mea-
surement matrices are different. In this paper, in the noiseless case, one sufficient condition for exact
support recovery with SOMP is presented to improve the existing results. By using a counter example, in
the noiseless case, an open problem presented in (Xu et. al, 2015) is solved.
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1. Introduction

The multiple measurement vectors (MMV) problem aims to re-
cover, from sets of compressed measurements, unknown sparse
matrices with nonzero entries restricted to a subset of rows. Such
problems arise in neuromagnetic imaging [1], source localization
[2], and equalization of sparse-communication channels [3]. The
aim of the MMV problem is to recover the support of {X;}, . from
the observations

Yg:AXg, (=1,2,---,L, (])

where I1:={1, 2, ---, L} and A € R™". We define the support of
{Xc}een as supp({xe}een) = U {i | x(i) # 0}, where x,(i) denotes
tell

the ith entry of x, [4].

There have been many studies on the MMV problem associated
with (1). In terms of theoretical guarantees, ]J. Chen et al. [5,6] an-
alyzed the worst-case performance of MMV problem. R. Gribonval
et al. [7,8] provided the average-case analysis for MMV. ]. Gai et al.
[9] presented a high-performance recovery method for MMV. In
[10], simultaneous orthogonal matching pursuit (SOMP) was pro-
posed. In [11], several exact recovery criteria ensuring that SOMP
identifies the support of {X,},.q have been presented. ]. Determe
et al. [12] provided a novel lower bound for each iteration of SOMP.
]. Determe et al. [13] presented a theoretical analysis of SOMP op-
erating in the presence of Gaussian additive noise.
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The works mentioned above discussed MMV model when the
measurement matrices ({A¢},. ) for each sparse signal are iden-
tical. The authors in [14,15] investigated the case of different A, €
R™ M that is common in the practical applications. For example,
to reduce the cost at the nodes implementing compressed sensing
(CS) operation, it is advisable to generate A, independently with-
out communication among them [16-18]. Recently, under the case
of different A,, in the noisy case, Xu et. al [18] researched the MMV
problem using SOMP.

One of the most commonly known tool is the restricted isome-
try property (RIP, [20]). A matrix A satisfies RIP of the order K if

(1-38)[[h[l3 < [A[3 < (1+8)[h]]3 (2)

for all K-sparse vector h with the restricted isometry constant (RIC)
81( € (0, 1 )

In this study, we mainly recover the support of {X;},. from
the following problem by SOMP in the noiseless case.

\ =A5Xg, V(Ze IT. (3)

Section 2 describes SOMP and related quantities. In Section 3, we
show that if A, (¢ e Il) satisfies the RIP of order K + 1 with

1
Ol < ——,
= Ik 1
then SOMP can recover the support of {X;},. in K iterations. Our

result (4) is unrelated to the value of {X;},. . Furthermore, in the
noiseless case, for any given positive integer K and any ﬁ <8<

1, there always exists a matrix A satisfying the RIP with §x,.1 =6

(4)
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for which SOMP fails to recover the support of {X;},.y in K itera-
tions. We conclude the paper in Section 4. Most of the technical-
ities are reported in Section 5 to simplify the presentation in the
core of the paper.

Now we give some notations. Let Q2:={1, 2, ---, n} and IT:={1,
2, ---, L}. Scalars are written as lowercase letters, e.g., d. We de-
note vectors by boldface lowercase letters, e.g., X, and matrices as
boldface uppercase letters, e.g., Z. For a vector ensemble {X;},.,
X¢(i) means the ith entry of X,. {A;},.1 denotes a matrix ensem-
ble. A, r is the matrix containing the columns of A, indexed by
I". Similarly, x, r is the vector containing the entries of X, indexed
by I'. Let P, =A,, FA and Pir =1- P, denote the orthogo-
nal projection operator onto the column space of A, r and its or-
thogonal complement, respectively. Let Z’ denote the transpose of
Z c R™L, z, is the ¢th column of Z and z,(i) also denotes (i, ¢)-
entry of Z. [|z¢|ly = XL 1ze(D)| and [lzello = /XL (ze (D)2 Zp is
the matrix containing the columns of Z indexed by I'. The cardinal-
ity of a finite set I" is denoted by |I'|. The support of {X;},. is de-
noted by supp({X}, 1), where supp({x¢},cr) = U {i | X¢(i) # 0}.

tell

2. Problem formulation

Assume that T := supp({X¢},c1) and ||
rithm [18] is listed in Algorithm 1.

= K. The SOMP algo-

Algorithm 1 The SOMP algorithm [18].

Input: {y(}kl'[v {AK}(eHv and K
Initialization: 10 =y, (¢ 1), A°=¢, and k=0
1: Repeat until “stopping criterion” is met
20k <~ k+1
e Match step: z¥ = Ajr¥~1 for V ¢ e T
« Identification step: lk = argmax; Y.-_; |z¥(i)|. If multiple max-
ima exist, choose only one arbitrarily.
e Merge step: AKX = Ak=1|J{ik}
o Update step:
xk = arg miny,.sypp e ak 1ye = Actlly for Ve e Il
=y, —Axk for Ve e Tl
3: End Repeat
Output: {x¥},.r; and the recovered support A

In the (k+1)th (0 <k <K) iteration, we begin with the esti-
mated support AK at iteration k. The discussion below demon-
strates the generation of Ak+1 [19].

In the update step of Algorithm 1, we need to solve a least
square problem, for ¢ I1, one has

b
¥ = AkY@ @ PL Ax, 2 P;:AkAZ,F\A“XLF\A“! (5)

where (a) follows from (3), (b) follows from I' = supp({X,},cr1) and
the definition of 7315L . When k =0, Ak = A9 = ¢. Then the orthog-

onal projector becomes an identity matrix.
In the matching step, we have

k+1 A,rg = A, ,PLAkyZ A, (7)@ Ak) 7)@ AkYﬁ
= A/( Ak) 73@ AkA/z M\AXg T\ Ak- (6)

So, in the identification step of Algorithm 1, according to [18],
one has

L
P EAOIEE
=1

Therefore, one has [18]

Vie Ak, (7)

L
argmax ) |21 ()] ¢ A¥, [AK =k, (8)

i.e., SOMP will choose a different index from :={1, 2, ---,
each iteration.

n} in

3. RIP analysis of SOMP

In this section, to improve the existing results and solve the
open problem presented in [18], in the noiseless case, we will
present one sufficient condition for exactly recovering the support
of {X/}, 1 with SOMP in K iterations.

3.1. Preliminary

Let A¥ denote the estimated support at iteration k. For simplic-
ity, denote

k+1 _ / gk 3 / k / gk nxL
7 = [Ajr] Ajrg A_rf; ArfleR (9)
k1 ki1 ki1 fe+1
Z Z zZ Z

for 0<k<K. Z1 is the ¢th column of Z*'. In other words, zK!
gathers the product of the transpose of the ¢th measurement ma-
trix A, and the ¢th residual rif at iteration k. In that sense, each
row of Z¥*! corresponds to a particular support index and will de-
termine whether that particular index will be picked or not.

Let

X = [X) k. Xorak X\ ak] € REOL (10)
and
Bk+1 ['P] AkA1X1 ’PZL,AkAZXZ ’P,fAkALxL] € RM*E (11)
—— S—— e ——’
bk bh#! b+

for 0<k<K. bk = leAkAgxg

umn of B**! for ¢ I1. In that sense, b¥*! is the residual at itera-
tion k corresponding to the ¢th measurement vector.
The following lemmas are useful in our analysis.

= ngAkAé.l"\Akxk,l"\Ak is the ¢th col-

Lemma 1. [21] If A satisfies the RIP of orders ky and k, with ki <k,
then &y, < dy,.

Lemma 2. [22, 23] Suppose that supp(x)=S. Let set S satisfy
ISNA|>1. If A satisfies the RIP of order |S|JA| with constant
8|SUA\’ then
(1 =8syaplixsiall3 < IPAAX3 = [|PxAs\aXs\4 15

<(1+ 8|SUA|)”x5\A ”%
Lemma 3. As defined in (9), (10) and (11), we have

1
2 el e 1B (12)

where (Z"“)’F\Ak (0 <k <K) is the matrix containing the columns of
(Zk+1Y indexed by T\ AKX, i.e., the rows of Z¥+1 indexed by T"\ A.

The proof of Lemma 3 is given in Section 5.1.

Lemma 4. To simplify the notation, for given jeI'¢, we define

o VK- +1-1 (13)
ke VLK —k)

and H*1 e R with

z"' (j)

—t e
Nk

T = o X
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