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a b s t r a c t 

In this work we present a novel algorithm for nonnegative tensor factorization (NTF). Standard NTF algo- 

rithms are very restricted in the size of tensors that can be decomposed. Our algorithm overcomes this 

size restriction by interpreting the tensor as a set of sub-tensors and by proceeding the decomposition of 

sub-tensor by sub-tensor. This approach requires only one sub-tensor at once to be available in memory. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Since the pioneering works [42,52] , non-negative matrix factor- 

ization (NMF) has attracted much interest in the context of several 

applications such as image and signal processing, computer vision, 

data analysis, blind source separation [12,22,27,30,32,42,45,53,69] . 

Particularly in image processing, the associated constraints are de- 

sirable to retain the non-negative characteristics of the original 

data, since the pixel values of the basis images essentially share 

this feature, leading to a natural meaning regarding the underly- 

ing components. As a result, we can, for instance, better represent 

a face as a linear combination of basis images by NMF in contrast 

with classical methods such as principal component analysis (PCA) 

[42,45] . 

Furthermore, NMF can be viewed as an implicit sparse rep- 

resentation of the input data [27,30,42] , which allows represent- 

ing local features of distributed parts over a human face such 

as eyes, nose and mouth, and, consequently, learning features of 
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images in face recognition applications. Broadly speaking, a sub- 

space representation by non-negative factorizations makes possi- 

ble to determinate hidden structures and characteristics inherent 

to an object class of the input data set, which is helpful in object 

recognition, detection of semantic features of text documents and 

of spectral characteristics of hyperspectral images, among others 

[1,12,22,27,42,46,53,62,69] . 

Tensorial approaches naturally arise from multilinear structures 

or multidimensional data, and NMF has been extended to higher- 

order tensors by the non-negative tensor factorizations (NTFs). 

The NTF was firstly introduced [6] by imposing non-negative con- 

straints over the matrix factors of the well-known decomposition 

called CANDECOMP/PARAFAC (or, shortly CP) [5,24] . Analogously, 

a non-negative version of the Tucker decomposition [61] has also 

been presented and is referred to here as non-negative Tucker de- 

composition (NTD) [3] , representing a more complex model, as the 

core tensor could be dense and the matrix factors not necessarily 

have the same number of columns. An interesting advantage of the 

NTF/NTD is that, in general, tensor decompositions are essentially 

unique under mild conditions, as opposed to NMF. More precisely, 

the uniqueness issue associated with the NTD/NTF happens when 

the factors are not sufficiently sparse [70] . 

Almost all NMF algorithms can be generalized or extended to 

non-negative tensor factorizations by the use of unfolding matri- 
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ces of the higher-order tensor or by a multi-layer strategy (multi- 

factor model) [12,17] . A very popular multiplicative update (MU) 

method [42] can be derived, regarding gradient descent methods, 

by solving the following optimization problem 

(A 

∗, B 

∗) = arg max 
A,B 

f ( A , B ) = arg max 
A,B 

1 

2 

‖ 

Y − AB ‖ 

2 
F . (1) 

The MU rule with a simple projection to the non-negative space at 

each updating step is given by 

b n,p ← b n,p 

[
A 

T Y 

A 

T AB 

]
n,p, + 

, a m,n ← a m,n 

[
YB 

T 

ABB 

T 

]
m,n, + 

, (2) 

which has a simple and easy implementation despite presenting 

slow convergence [49] . 

A basic approach to NMF, called alternating non-negative least 

squares (ANLS), is driven by alternating least squares (ALS) tech- 

niques [12] based on the alternating minimization of the cost func- 

tion (1) with respect to the nonnegativity-constrained matrices A 

and B separately. However, it does not necessarily lead to global 

minimization. Several algorithms have been proposed based on 

the ANLS framework with the purpose of accelerating and over- 

coming the unstable convergence properties of the standard ANLS 

and, also, becoming more robust to noise [12] by including penalty 

terms on the cost function (1) to add supplementary or to preserve 

constraints on A and B as nonnegativity, sparsity and smoothness, 

leading to generalized NMF methods [11,29,30,53,64] . 

The hierarchical AL S (HAL S) algorithm [11] is an alternative 

method to ALS based on an optimization of a set of local cost func- 

tions, which updates each column of A and B instead of directly 

computing the whole matrices at each iterative step. This method 

is simple and often used for multi-layer models to improve perfor- 

mance; furthermore, it is efficient for large-scale NMF [12,17] . An- 

other fast algorithm in the ANLS framework, referred to as ANLS- 

BPP, was proposed in [35] , and employs the block principal pivot- 

ing (BPP) and active set methods [41] . The ANLS-BPP technique can 

outperform the HALS mainly when the matrix factors are sparse. 

It is interesting to remark that the optimization problem given 

by (1) can also be formulated in terms of the Kullback–Leibler 

divergence [43,45] or other divergences [8,10,67] instead of the 

Frobenius norm. A problem that arises from the processing of 

large-scale or ill-conditioned data is the slow convergence, mainly 

for the MU methods, and the increase of computational complex- 

ity and memory requirements. An efficient way to reduce the com- 

plexity and to improve the performance of the NTF/NTD is to in- 

clude a pre-processing step based on low-rank approximation tech- 

niques, as proposed in [69,70] . 

We present in this paper a novel algorithm for NTF and sparse 

NTF adapted to higher-order tensor decomposition with one large 

dimension. Algorithms for NTF presented in the past were often re- 

stricted in the size of tensors that can be decomposed. Algorithms 

designed to overcome this size restriction, for example based on 

block wise decomposition , require a frequent access to partitions 

of the whole data of the tensor. The presented algorithm in con- 

trary requires only a minimum of data access and is even capa- 

ble to start a decomposition before the whole tensor is known. 

In comparative tests the algorithm has proved to be competitive 

with state of the art algorithms. NsTEF is an incremental algorithm 

as incremental PCA [65] or INMF proposed by Bucak and Gunsel 

[4] but it deals with tensors, not with matrices. An important ad- 

vantage of tensor decompositions over standard matrix approach is 

the model uniqueness; if it exists, is unique [9] , which leads to an 

interesting benefit of our method. 

The rest of the paper is organized as follows: related works are 

presented in Section 2 where problems encountered using stan- 

dard NTF algorithms are detailed; Section 3 introduces the pro- 

posed algorithm, named NsTEF; we present the experimental re- 

sults in Section 4 ; finally, we conclude this paper in Section 6 . 

Notation 

N -th order tensors (for N ≥ 3), matrices (second-order tensors), 

vectors (first-order tensors), and scalars (zero-order tensors) are 

respectively denoted by calligraphic ( A , B , . . . ), boldface upper- 

case ( A , B , . . . ), boldface lower-case ( a , b , . . . ), and lower-case let- 

ters ( a, b, . . . ). Each element of an N -order tensor A is denoted 

by a i 1 ,i 2 , ··· ,i N . A tensor A is called non-negative if all its elements 

are non-negative, i.e. a i 1 ,i 2 , ··· ,i N ≥ 0 . For non-negative real tensors 

we use the short hand notation A ≥ 0 and A ∈ R + . A i 1 ·· ∈ R 

I 2 ×I 3 , 

A ·i 2 · ∈ R 

I 1 ×I 3 , A ··i 3 ∈ R 

I 1 ×I 2 represent the slices of a third-order ten- 

sor A constructed by fixing the mode 1, 2, and 3, respectively. 

Any higher-order tensor can be represented by matrix unfoldings 

from the rearrangement of its elements into a matrix from the 

matrix slicings by fixing one mode. Consider for example a third- 

order tensor A ∈ R 

I 1 ×I 2 ×I 3 , we can define three different matrix 

unfoldings: A I 1 ×I 2 I 3 

�= 

[
A ·1 · . . . A ·I 2 ·

]
, A I 2 ×I 3 I 1 

�= 

[ 
A 

T 
··1 . . . A 

T 
··I 3 

] 
and 

A I 3 ×I 1 I 2 

�= 

[ 
A 

T 
1 ·· . . . A 

T 
I 1 ··

] 
to represent the same tensor A . By con- 

vention, the indexes placed more to the left vary slower and the 

ones placed more to the right vary faster. The Kronecker, Khatri–

Rao, Hadamard and outer products are denoted by �, �, • and ◦
respectively. The trace of A is denoted by Tr( A ). 

Definition 1. The n -mode product of a tensor G ∈ R 

I 1 ×···×I n ×···×I N 

and a matrix A ∈ R 

J n ×I n is an ( I 1 × · · · × I n −1 × J n × I n +1 × · · · × I N )- 

tensor given by 

[ G ×n A ] i 1 , ... ,i n −1 , j n ,i n +1 , ... ,i N 

�= 

I n ∑ 

i n =1 

g i 1 , ... ,i n , ... ,i N a j n ,i n , for all index values. 

(3) 

The n -mode product is a compact form to represent linear 

transformations involving tensors and (3) can be rewritten in 

terms of matrix unfoldings by fixing the n -th mode as follows 

X = G ×n A ⇔ X (n ) = A G (n ) , (4) 

where X ( n ) and G ( n ) denote the matrix unfolding of X and G asso- 

ciated with the n -th mode. 

2. Tensor models 

Tensor decompositions were first discussed in 1927 by Hitch- 

cock [28] . In the late 1960s tensor decompositions were rediscov- 

ered by Tucker [61] , Carroll and Chang [5] , and Harshman [24] re- 

spectively named Tucker decomposition, canonical decomposition 

(CANDECOMP), and parallel factors analysis (PARAFAC). The two 

last models, referred to herein as CP, were independently devel- 

oped in psychometrics and phonetics, however both correspond to 

the same decomposition and the names report to different features 

of this model. Tucker model is a general version of the well-known 

CP model and was also applied in psychometrics. A particular case 

of this decomposition can be viewed as a multilinear generaliza- 

tion of the singular value decomposition (SVD) for higher-order 

tensors later introduced by Lathauwer [40] . Tensor decompositions 

appear today in various fields including image and signal process- 

ing, clustering analysis, data compression, blind source separation, 

direction of arrival estimation, hyperspectral imaging and others 

[2,51,55,62] . 

2.1. CANDECOMP/PARAFAC (CP) model 

The CP model decomposes a tensor as a minimal sum of rank- 

one tensors, which can be defined in a concise form and denoted 
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