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a b s t r a c t 

A multi-innovation fractional order stochastic gradient (MIFOSG) algorithm, which involves a variable ini- 

tial value scheme, is investigated to identify the Hammerstein nonlinear ARMAX systems in this paper. 

Firstly, according to an improved fractional order gradient method, the MIFOSG algorithm is proposed. 

Furthermore, according to the martingale convergence theorem, the convergence analysis of the proposed 

algorithm is developed. In addition, for the purpose of improving the convergence performance, a forget- 

ting factor on step size and a variable gradient order are introduced. Given a sufficiently large number of 

independent runs, the effectiveness of the proposed algorithm is demonstrated in two numerical exam- 

ples finally. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

As we known, many systems with nonlinear dynamics such as 

chemical systems [1] , signal processing [2] and mechanical sys- 

tems [3] , etc., can be modeled as Hammerstein nonlinear ARMAX 

systems [4] . The identification of Hammerstein nonlinear ARMAX 

systems has drawn lots of scholars’ attention. A recursive least- 

squares method and an iterative least-squares method are pro- 

posed in [4] . Also, on the basis of gradient search principle, the 

recursive stochastic gradient method and iterative stochastic gradi- 

ent method are designed in [5] . 

However, for the method based on conventional stochastic gra- 

dient, the convergence rate is not satisfying enough since only cur- 

rent knowledge of the systems is utilized. In order to obtain a bet- 

ter convergence rate, Ding and Chen creatively proposed a notable 

new method based on MISG and analyzed its performance in [6] . 

Because of the superiority of the MISG in convergence rate, the 

method and its variants have been utilized to identify CARMA sys- 

tems [7] , Hammerstein nonlinear CARMA systems [5] , Box-Jenkins 

systems [8] and Hammerstein nonlinear CARAR systems [9] , etc., 

and obtained more extraordinary convergent performance than 

conventional stochastic gradient method. 

As pointed out in [10,11] , fractional order calculus has attracted 

many scholars’ attention in system control [12–14] and signal pro- 

cessing [15,16] , etc, because of the non–locality, namely, the next 

� Fully documented templates are available in the elsarticle package on CTAN. 
∗ Corresponding author. 

E-mail address: yongwang@ustc.edu.cn (Y. Wang). 

state of a system not only depends on its current state but also 

on its historical states starting from the initial time. Some crucial 

pioneering work by applying fractional order calculus into signal 

processing can be found in [17,18] and some fundamental theories 

and applications are presented in [19,20] . In the complex domain, 

Tseng et al. designed fractional order derivative constrained 1-D 

and 2-D FIR filters in [21] . By utilizing Riemann–Liouville integral, 

Wang et al. presented fractional zeros phase filter in [22] . In [23] , 

Liu et al. developed a signal reconstruction scheme in fractional 

Fourier domain. In [24] , Pu et al. proposed a factional order gradi- 

ent method to seek the fractional extreme value. However, because 

of the non-locality of the fractional order calculus, the calculated 

fractional extreme value is sensitive to the initial value and dif- 

ferent from the exact extreme value in general. For the purpose 

of ensuring that the algorithm will converge to the exact extreme 

value, a fractional order LMS algorithm with variable initial value 

scheme is designed in [16] . Raja et al. developed another type of 

fractional order LMS algorithm and applied it into channel equal- 

isation [25,26] , active noise rejection [27,28] and system identifi- 

cation [15,29,30] etc., and achieved good performance. Almost all 

of the existing results show that introduction of fractional order 

calculus can help obtain a better performance than the conven- 

tional counterpart. Therefore, the superiority can be also reflected 

by combination of multi-innovation and fractional order calculus. 

Motivated by the discussions above in this paper, an improved 

fractional order gradient method with variable initial value is de- 

veloped for a quadratic function. Based on the improved frac- 

tional order gradient method, a fractional order stochastic gradient 

(FOSG) algorithm is designed to identify the Hammerstein nonlin- 
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ear ARMAX systems. Then the developed algorithm is extended to 

the multi-innovation case and MIOSG algorithm is obtained. The 

convergence performance of MIOSG algorithm is analyzed in the 

light of the martingale convergence theorem. 

The remainder of this paper is organized as follows. 

Section 2 provides some preliminaries of fractional order cal- 

culus and develops an improved fractional order gradient method. 

The MIFOSG algorithm and its performance analysis are presented 

in Section 3 . In Section 4 , two numerical examples are provided 

to illustrate the effectiveness of the proposed method. Conclusions 

are given in Section 5 . 

Notations The ∞ denotes the positive infinite ( + ∞ ). λmin { ·} 
( λmax { ·}) is the minimal (maximum) eigenvalue of a given ma- 

trix. z −1 means a unit backward shift operator, i.e., z −1 x (n ) = 

x (n − 1) , a · b means two vectors multiplied element by element. 

The norm of a given matrix X is calculated by || X || 2 = Tr [ X X T ] . 

lim n →∞ 

g 1 (n ) 
g 2 (n ) 

= 0 can be shorted as g 1 (n ) = o(g 2 (n )) . For g 2 ( n ) ≥ 0, 

g 1 (n ) = O (g 2 (n )) stands for that ∃ δ > 0 to make | g 1 ( n )| ≤ δg 2 ( n ). 

2. Preliminaries 

2.1. Fractional order calculus 

There are three popular definitions of fractional order deriva- 

tives, namely, Gr ̈u nwald–Letnikov derivative, Caputo derivative and 

Riemann–Liouville derivative. In this paper, we process the frac- 

tional order calculus based on the Riemann–Liouville definition, 

which can be expressed in the following derivative. 

Definition 1. The αth derivative of a given function f ( t ) is defined 

as 

t 0 
D 

α
t f (t) = 

1 

�(n − α) 

d 

n 

d t n 

∫ t 

t 0 

( t − τ ) n −α−1 f ( τ )d τ , (1) 

where n − 1 ≤ α < n, and �(n − α) = 

∫ ∞ 

0 t n −α−1 e −t d t is the so–

called Gamma function. 

Based on the Riemann–Liouville derivative of f ( t ), the following 

lemma can be introduced. 

Lemma 1 (see [16] ) . For a given quadratic function f (t) = (t − a ) 2 −
(t 0 − a ) 2 , a corresponding fractional order gradient method with vari- 

able initial value t 0 = t(n − 1) can be expressed as 

t(n + 1) 

= t(n ) − μ
t(n −1) 

D 

α
t(n ) 

f (t(n )) 

= t(n ) − μ
f (1) (t(n − 1)) 

�(2 − α) 
[ t(n ) − t(n − 1)] 1 −α

−μ
f (2) (t(n − 1)) 

�(3 − α) 
[ t(n ) − t(n − 1)] 2 −α, 

(2) 

which will converge to the exact extreme value of f ( t ), if the algorithm 

in (2) is convergent. 

As discussed in [16] , t ( n ) is usually a slowly varying se- 

quences, namely, | t(n ) − t(n − 1) | � 1 . Then, 
t(n −1) 

D 

α
t(n ) 

f (t(n )) is 

determined by f (1) (t(n −1)) 
�(2 −α) 

×[ t(n ) − t(n − 1)] 1 −α . Besides, it is pos- 

sible that t(n ) − t(n − 1) < 0 , which will lead that [ t(n ) − t(n −
1)] 1 −α is a complex number. Therefore, it is necessary to mod- 

ify [ t(n ) − t(n − 1)] 1 −α as | t(n ) − t(n − 1) | 1 −α . Furthermore, when 

1 < α < 2, t(n ) = t(n − 1) will lead to [ t(n ) − t(n − 1)] 1 −α = ∞ . 

Thereby, [ | t(n ) − t(n − 1) | ] 1 −α should be modified as [ | t(n ) − t(n −
1) | + ε] 1 −α, where ε is a small number. Consequently, for the 

quadratic function, the fractional order gradient method in (2) can 

be improved as follows 

t(n ) = t(n − 1) −μ
f (1) (t(n − 2)) 

�(2 − α) 
[ | t(n − 1) − t(n − 2) | + ε] 1 −α. 

(3) 

2.2. Hammerstein nonlinear ARMAX system 

A Hammerstein nonlinear ARMAX system is governed by the 

following equation [29,31] 

A (z) y (n ) = B (z) ̄u (n ) + D (z) v (n ) (4) 

where u ( n ), y ( n ) and v ( n ) are the system input, system output 

and white Gaussian noise with zero mean and σ 2 variance, re- 

spectively. In detail, A (z) = 1 + a 1 z 
−1 + · · · + a l a z 

−l a , B (z) = b 1 z 
−1 + 

· · · + b l b z 
−l b , D (z) = 1 + d 1 z 

−1 + · · · + d l d z 
−l d and ū (n ) = h 

T f (u (n )) , 

where f (u (n )) � [ f 1 (u (n )) , · · · , f l h (u (n ))] T is a vector whose el- 

ements are known nonlinear functions of u ( n ), a � [ a 1 , · · · , a l a ] 
T , 

b � [ b 1 , · · · , b l b ] 
T , h � [ h 1 , · · · , h l h ] 

T , d � [ d 1 , · · · , d l d ] 
T are unknown 

parameter vectors of the system in (4) to be identified. 

According to (4) , the system output can be expressed as 

y (n ) = φT (n ) θ + v (n ) , (5) 

where θ = [ a 

T , h 

T 
� b T , d T ] T ∈ R 

l and φ(n ) = [ φT 
y , φ

T 
f 1 

, . . . , 

φT 
f l h 

, φT 
v ] 

T ∈ R 

l with l = l a + l b l h + l d , φy = [ y (n − 1) , . . . , y (n −
l a )] T ∈ R 

l a , φ f i 
= [ f i (u (n − 1)) , . . . , f i (u (n − l b ))] T ∈ R 

l b , i = 1 , . . . , 

l h , φv = [ v (n − 1) , · · · , v (n − l d )] T ∈ R 

l d . 

Remark 1. As discussed in [4,5] , we can set h 1 = 1 . Then the 

estimates ˆ a , ˆ b and 

ˆ d of a , b and d can be directly obtained 

from [ ̂  θ1 , · · · , ˆ θl a ] , [ ̂  θl a +1 , · · · , ˆ θl a + l b ] and [ ̂  θl a + l h l b +1 , · · · , ˆ θl a + l h l b + l d ] , 

where ˆ θi is the i th element of ˆ θ and 

ˆ θ means the estimated value 

of θ . ˆ h can be obtained by 

ˆ h = 

1 

l b 

l b ∑ 

i =1 

[ 
1 , 

ˆ θl a + l b + i 
ˆ θl a +1 

, · · · , 
ˆ θl a + l h l b + i 

ˆ θl a + l b 

] T 
. (6) 

Therefore, one of the main objectives of this paper is to design the 

MIFOSG algorithm to identify θ. 

3. Main results 

3.1. The FOSG algorithm 

For the purpose of identifying the parameters of system (4) , the 

FOSG algorithm with variable initial value ˆ θ(n − 2) will be pre- 

sented in this section. Consider ˆ θ(n ) as the estimated value of θ
and define the criterion function as 

J(n ) � 

1 

2 

[ y (n ) − φT (n ) θ] 2 . (7) 

Based on the improved fractional order gradient method in (3) , θ
can be identified by 

ˆ θ(n ) = 

ˆ θ(n − 1) + μ[ y (n ) − φT (n ) ̂  θ(n − 1)] 

×φ(n ) · [ | ̂  θ(n − 1) − ˆ θ(n − 2) | + ε] 1 −α

�(2 − α) 

= 

ˆ θ(n − 1) + μ[ y (n ) − φT (n ) ̂  θ(n − 1)] 
�( ̂  θ, α, n ) 

�(2 − α) 
φ(n ) , 

(8) 

where �( ̂  θ, α, n ) = diag { [ | ̂  θ1 (n − 1) − ˆ θ1 (n − 2) | + ε] 1 −α, [ | ̂  θ2 (n −
1) − ˆ θ2 (n − 2) | + ε] 1 −α, · · · , [ | ̂  θl (n − 1) − ˆ θl (n − 2) | + ε] 1 −α} . 

However, as discussed in [4,5] , since φ( n ) contains un- 

known v (n − i ) , i = 1 , · · · , l d , the designed algorithm cannot 

be realized in practice. Hereby, in this paper, φ( n ) in (8) is 

replaced by ˆ φ(n ) = [ φT 
y (n ) , φT 

f 1 
(n ) , · · · , φT 

f l h 

(n ) , ˆ φT 
v (n )] T , where 
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