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for LMS adaptation are investigated for a stationary white Gaussian data model for system identification.
Nonlinear recursions are derived for the transient and steady-state weight first and second moments that
include the effect of soft limiters on both the input and the error driving the algorithm. By varying a
single parameter of the soft limiter, a general theory is presented that is applicable to LMS, soft limiting
of the input, error or both and sign-sign LMS.
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1. Introduction

The late 1980s and early 1990s saw a great interest in the be-
havior of the LMS algorithm implemented with physical hardware
that introduced nonlinearities into the algorithm when configured
as an echo canceller [1-21]. Many of these analyses were based on
approximating the statistics of the weight update recursion nonlin-
earities as conditional Gaussian expectations, conditioned on the
present weight error vector. The nonlinearities were constrained
to be odd symmetric, and the data sequence was white. Further-
more, other constraints were placed on the statistics of the data
sequence and the echo sequence (independent of each other, the
echo sequence being zero mean white Gaussian).

The effect of an arbitrary nonlinear operation on the data input
to the weight update equation was investigated in [13] for a Gaus-
sian input model. The effect of a soft limiter, modeled as a scaled
error function, was studied in [18]. The effect of hard limiters upon
the input, error and input-error product was studied in [19-21,45].
However, by varying one parameter of the soft limiter, a general
theory is presented here that is applicable to LMS, soft limiters of
the input, error or both and sign-sign LMS. The unified theory al-
lows one to simply and precisely study the tradeoff effects of the
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degree of saturation and the algorithm step-size for the modified
LMS algorithm.

More recently approaches based on energy conservation argu-
ments have been employed for deriving recursions for the first and
second moment behavior of adaptive algorithms with error and
data nonlinearities [22-27]. The case of data nonlinearities was an-
alyzed in [24] for nonlinearities that can be modeled by the prod-
uct of a full rank data nonlinearity matrix and the input regres-
sor. The case of error nonlinearities was studied in [25,26]. These
analyses were then extended in [27] to consider both error and
data nonlinearities, the latter still limited to the model used in
[24]. This model is not amenable to the study of adaptive filters
with soft limiters applied to the data. These results required the
assumption of long filters and a Gaussian assumption on the a pri-
Ori error.

A number of recent papers [28-30] have also investigated this
problem from a control systems viewpoint for non-Gaussian addi-
tive noise. The non-Gaussian noise is modeled as a two component
Gaussian mixture [31-34]. This type of additive non-Gaussian noise
can be studied within the framework of this paper by consider-
ing conditional expectations for each component separately as was
done in [35].

To the best of our knowledge, the case of soft limiters on both
the error and the input has not been analyzed previously in the
literature. Thus, the unified theory yields an important new re-
sult by itself. The use of simultaneous input and error satura-
tion (sign-sign LMS) is suggested in the 32kbit/s ADPCM speech
coder in the ITU-T recommendation G.726 [36—p. 10]. Furthermore,
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Fig. 1. Adaptive plant identification.

these types of applications are discussed in coding texts such
as [37].

The paper is organized as follows. Section 2 defines the prob-
lem and the statistical assumptions used to solve the problem.
Section 3 derives generic recursions for the mean and second mo-
ment behavior of the adaptive weights for arbitrary nonlinearities.
These recursions involve unknown expectations of nonlinear func-
tions of conditional Gaussian variates. This evaluation is one of
the novelties of this paper. Section 4 specializes these recursions
to the soft limiting of both the input and error for identifying a
fixed channel. Section 5 extends these results to the identification
of a Markov channel. Section 6 compares the developed theory
with Monte Carlo simulations. Section 7 presents the conclusions.
Capital letters denote vectors or matrices, and small letters denote
scalar variables.

2. Problem definition and statistical assumptions
2.1. System identification and the Markov channel model

This paper will study the system identification model given
in Fig. 1. All signals and systems are real. The N-dimensional
input vector to the adaptive filter tap weights is given by
X(n) =[x(n),x(n —1),....... x(n—N+1)]", where the superscript T
means transpose.

Assumption 1. The observation noise ne(n) is zero-mean white
Gaussian with variance o2 and independent of X(n).

Assumption 2. The sequence {x(n)} is also zero-mean white Gaus-
sian and stationary with power o2.

The unknown channel is modeled as a linear time varying sys-
tem whose impulse response is given by the standard random
walk model, a particular case of a first-order Markov process [39—
Section 14.1]

H(n+1) = H(n) + Q(n) (1)

where Q(n) is a white Gaussian vector with zero mean and covari-
ance matrix E[Q(n)Q"(n)] = o1, where I is the identity matrix.

Assumption 3. The vector sequence Q(n) is independent of both
X(n) and ne(n).

This model is the so-called random walk approximation to the
first order Markov model [38]. The random walk model (1) is not
realistic. However, it allows a feasible tracking analysis that pro-
vides important insights into the ability of the adaptive algorithm
to track channel variations.

2.2. Independence theory and the performance measure

Assumption 4. The adaptive filter weights at time n, W(n), are sta-
tistically independent of the input vector X(n) [38].

This assumption is denoted the Independence Theory (IT) of
adaptive filtering. The use of this assumption considerably simpli-
fies the stochastic analysis of the adaptive filter. The IT assumption
has been shown to lead to very accurate models in a wide variety
of adaptive filter applications.

Define the weight deviation vector V(n) = W(n) — H(n) and the
weight deviation covariance matrix Kyy(n) = E[V(n)VT(n)]. Then
the mean square deviation (MSD) is given by [39]

MSD(n) = E[V(n)"V(n)] = trace[Kyy(n)] (2)

where trace[B] is the trace of the matrix B. The IT assumption is
needed when evaluating the recursions for the mean weight and
Kyy(n) as will be shown shortly.

2.3. LMS algorithm

The algorithm for changing the weights of the LMS adaptive fil-
ter is given by

W(n+ 1) = W(n)+ue(n)X(n) (3)
where
e(n) = H'(n)X(n) + no(n) — W' (n)X(n) (4)

and p is the step-size.
2.4. Nonlinear LMS algorithm

The algorithm for changing the weights of the nonlinear LMS
adaptive algorithm studied here first is given by
W(n+1) =W(n)+pugi[e(n)]G[X(n)] (5)
where GJ[X(n)] = [g2[x(n)], g2[x(n — 1)], .....g2[x(n = N+ )]}, and

g1[-], and g,[-] are bounded nonlinear odd functions.

3. Stochastic recursions for the mean and second moment
behavior of the adaptive weights

For simplicity, the system identification problem is first ana-
lyzed for the fixed channel with H(n) =W,. It is easy to extend
these results to the Markov channel. Subtracting (1) from (5) yields
V(n+1) =V(n)+u gi[e(n)]Gz[X(n)] (6)

wheree(n) =d(n) — WT(n)X(n) =no(n) —VI(n)X(n), and W, is
the weight vector of the unknown system. Using IT,

E{e’(n)} = 0 + 07 trace [Kyy (n)]. (7)
Averaging the ith weight error yields
E{vi(n + 1)} = E{v;(n)} + w E{g1[e(n)]g2[x(n —i+ 1)]} (8)

for i=1 to N and v;(n) is the ith component of V(n).
Post-multiplying (6) by its transpose and averaging yields

Kyv(n+ 1) = Kyy(n) + HE[g1[e(m) ]G [X() VT (m)]
+ 1E[g1[e(m)]V(n)G3[X(n)]]
+ W2E{g2[e(m) ]G, (X () IGEX(m)]} 9)
The recursions for the diagonal terms are
Kyv(n+1);; = Ky (n);; + 2 {E[gi[e(n)]g[x(n — i+ D)]vi(n)]}
+’E{gile(n)]g3[x(n — i+ 1)]} (10)
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