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a b s t r a c t 

The effects of saturation-type nonlinearities on the input and the error in the weight update equation 

for LMS adaptation are investigated for a stationary white Gaussian data model for system identification. 

Nonlinear recursions are derived for the transient and steady-state weight first and second moments that 

include the effect of soft limiters on both the input and the error driving the algorithm. By varying a 

single parameter of the soft limiter, a general theory is presented that is applicable to LMS, soft limiting 

of the input, error or both and sign–sign LMS. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The late 1980s and early 1990s saw a great interest in the be- 

havior of the LMS algorithm implemented with physical hardware 

that introduced nonlinearities into the algorithm when configured 

as an echo canceller [1-21] . Many of these analyses were based on 

approximating the statistics of the weight update recursion nonlin- 

earities as conditional Gaussian expectations, conditioned on the 

present weight error vector. The nonlinearities were constrained 

to be odd symmetric, and the data sequence was white. Further- 

more, other constraints were placed on the statistics of the data 

sequence and the echo sequence (independent of each other, the 

echo sequence being zero mean white Gaussian). 

The effect of an arbitrary nonlinear operation on the data input 

to the weight update equation was investigated in [13] for a Gaus- 

sian input model. The effect of a soft limiter, modeled as a scaled 

error function, was studied in [18] . The effect of hard limiters upon 

the input, error and input-error product was studied in [19-21,45] . 

However, by varying one parameter of the soft limiter, a general 

theory is presented here that is applicable to LMS, soft limiters of 

the input, error or both and sign–sign LMS. The unified theory al- 

lows one to simply and precisely study the tradeoff effects of the 
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degree of saturation and the algorithm step-size for the modified 

LMS algorithm. 

More recently approaches based on energy conservation argu- 

ments have been employed for deriving recursions for the first and 

second moment behavior of adaptive algorithms with error and 

data nonlinearities [22-27] . The case of data nonlinearities was an- 

alyzed in [24] for nonlinearities that can be modeled by the prod- 

uct of a full rank data nonlinearity matrix and the input regres- 

sor. The case of error nonlinearities was studied in [25,26] . These 

analyses were then extended in [27] to consider both error and 

data nonlinearities, the latter still limited to the model used in 

[24] . This model is not amenable to the study of adaptive filters 

with soft limiters applied to the data. These results required the 

assumption of long filters and a Gaussian assumption on the a pri- 

ori error. 

A number of recent papers [28-30] have also investigated this 

problem from a control systems viewpoint for non-Gaussian addi- 

tive noise. The non-Gaussian noise is modeled as a two component 

Gaussian mixture [31-34] . This type of additive non-Gaussian noise 

can be studied within the framework of this paper by consider- 

ing conditional expectations for each component separately as was 

done in [35] . 

To the best of our knowledge, the case of soft limiters on both 

the error and the input has not been analyzed previously in the 

literature. Thus, the unified theory yields an important new re- 

sult by itself. The use of simultaneous input and error satura- 

tion (sign–sign LMS) is suggested in the 32 kbit/s ADPCM speech 

coder in the ITU-T recommendation G.726 [ 36 —p. 10]. Furthermore, 
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Fig. 1. Adaptive plant identification. 

these types of applications are discussed in coding texts such 

as [37] . 

The paper is organized as follows. Section 2 defines the prob- 

lem and the statistical assumptions used to solve the problem. 

Section 3 derives generic recursions for the mean and second mo- 

ment behavior of the adaptive weights for arbitrary nonlinearities. 

These recursions involve unknown expectations of nonlinear func- 

tions of conditional Gaussian variates. This evaluation is one of 

the novelties of this paper. Section 4 specializes these recursions 

to the soft limiting of both the input and error for identifying a 

fixed channel. Section 5 extends these results to the identification 

of a Markov channel. Section 6 compares the developed theory 

with Monte Carlo simulations. Section 7 presents the conclusions. 

Capital letters denote vectors or matrices, and small letters denote 

scalar variables. 

2. Problem definition and statistical assumptions 

2.1. System identification and the Markov channel model 

This paper will study the system identification model given 

in Fig. 1 . All signals and systems are real. The N-dimensional 

input vector to the adaptive filter tap weights is given by 

X(n) = [ x(n) , x(n − 1) , ....... x(n − N + 1) ] T , where the superscript T 

means transpose. 

Assumption 1. The observation noise n o (n) is zero-mean white 

Gaussian with variance σ 2 
o and independent of X(n). 

Assumption 2. The sequence {x(n)} is also zero-mean white Gaus- 

sian and stationary with power σ 2 
x . 

The unknown channel is modeled as a linear time varying sys- 

tem whose impulse response is given by the standard random 

walk model, a particular case of a first-order Markov process [ 39 —

Section 14.1] 

H(n + 1) = H(n) + Q(n) (1) 

where Q(n) is a white Gaussian vector with zero mean and covari- 

ance matrix E[ Q(n) Q 

T (n ) ] = σ 2 
q I , where I is the identity matrix. 

Assumption 3. The vector sequence Q(n) is independent of both 

X(n) and n o (n). 

This model is the so-called random walk approximation to the 

first order Markov model [38] . The random walk model ( 1 ) is not 

realistic. However, it allows a feasible tracking analysis that pro- 

vides important insights into the ability of the adaptive algorithm 

to track channel variations. 

2.2. Independence theory and the performance measure 

Assumption 4. The adaptive filter weights at time n, W(n), are sta- 

tistically independent of the input vector X(n) [38] . 

This assumption is denoted the Independence Theory (IT) of 

adaptive filtering. The use of this assumption considerably simpli- 

fies the stochastic analysis of the adaptive filter. The IT assumption 

has been shown to lead to very accurate models in a wide variety 

of adaptive filter applications. 

Define the weight deviation vector V(n) = W(n) − H(n) and the 

weight deviation covariance matrix K VV (n) = E[ V(n) V 

T (n) ] . Then 

the mean square deviation (MSD) is given by [39] 

MSD (n) = E 

[
V(n) T V(n) 

]
= trace [ K VV (n) ] (2) 

where trace[B] is the trace of the matrix B. The IT assumption is 

needed when evaluating the recursions for the mean weight and 

K VV (n) as will be shown shortly. 

2.3. LMS algorithm 

The algorithm for changing the weights of the LMS adaptive fil- 

ter is given by 

W(n + 1) = W(n)+ μe(n)X(n) (3) 

where 

e ( n ) = H 

T ( n ) X ( n ) + n o ( n ) − W 

T ( n ) X ( n ) (4) 

and μ is the step-size. 

2.4. Nonlinear LMS algorithm 

The algorithm for changing the weights of the nonlinear LMS 

adaptive algorithm studied here first is given by 

W(n + 1) = W(n)+ μg 1 [ e(n) ] G 2 [ X(n) ] (5) 

where G 

T 
2 
[ X(n) ] = [ g 2 [ x(n) ] , g 2 [ x(n − 1) ] , ..... g 2 [x(n − N + 1)] ] , and 

g 1 [ �], and g 2 [ �] are bounded nonlinear odd functions. 

3. Stochastic recursions for the mean and second moment 

behavior of the adaptive weights 

For simplicity, the system identification problem is first ana- 

lyzed for the fixed channel with H(n) = W o . It is easy to extend 

these results to the Markov channel. Subtracting (1) from (5) yields 

V(n + 1) = V(n)+ μ g 1 [ e(n) ] G 2 [ X(n) ] (6) 

where e(n) = d(n) − W 

T (n) X(n) = n o (n) − V 

T (n)X(n) , and W o is 

the weight vector of the unknown system. Using IT, 

E 

{
e 2 (n) 

}
= σ 2 

o + σ 2 
x trace [ K VV (n) ] . (7) 

Averaging the ith weight error yields 

E { v i (n + 1) } = E { v i (n) } + μ E { g 1 [ e(n) ] g 2 [ x(n − i + 1) ] } (8) 

for i = 1 to N and v i ( n ) is the ith component of V(n). 

Post-multiplying ( 6 ) by its transpose and averaging yields 

K VV (n + 1) = K VV (n) + μE 

[
g 1 [ e(n) ] G 2 [ X(n) ] V 

T (n) 
]

+ μE 

[
g 1 [ e(n) ] V(n) G 

T 
2 [ X(n) ] 

]
+ μ2 E 

{
g 2 1 [ e(n) ] G 2 [ X(n) ]G 

T 
2 [ X(n) ] 

}
(9) 

The recursions for the diagonal terms are 

K VV (n + 1) i , i = K VV (n) i , i + 2 μ{ E [ g 1 [ e(n) ] g 2 [ x(n − i + 1) ] v i (n) ] } 
+ μ2 E 

{
g 2 1 [ e(n) ]g 2 2 [x (n − i + 1) ] 

}
(10) 
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