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a b s t r a c t 

Recently, many sparse-based methods have been proposed for direction-of-arrival (DOA) estimation. How- 

ever, these methods often suffer from the grid mismatch problem caused by the discretization of the 

potential angle space. Most of them employ the iterative grid refinement (IGR) method to alleviate this 

problem. Nevertheless, IGR requires a high computational load and may not comply with the restricted 

isometry property (RIP) condition in the compressed sensing (CS) theory. This paper aims to overcome 

the grid mismatch limitation inherent in conventional sparse-based techniques. In particular, we first in- 

troduce an off-grid model by incorporating the bias parameter into the signal model, then propose a two- 

step iterative method named off-grid � 1 Cholesky covariance decomposition (OGL1CCD) to solve the DOA 

estimation problem. Our method can be accelerated to save computations and the proposed algorithm 

framework can be extended for any other sparse-based method to improve their estimation accuracy. 

We then propose another off-grid method named off-grid � 1 covariance matrix reconstruction approach 

(OGL1CMRA) based on the covariance matrix model. Compared to OGL1CCD, OGL1CMRA is more compu- 

tationally efficient and accurate, but requires sufficient snapshots and uncorrelated sources. Our proposed 

methods are superior to many other methods in estimation performance, which is verified by extensive 

numerical simulations. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Direction finding, also known as direction-of-arrival (DOA) es- 

timation, is a fundamental problem in array signal processing and 

has been intensively studied in the past few decades for various 

applications, e.g., radar [1] , sonar and wireless communications [2] . 

Since the 1970s when Pisarenko found the DOAs can be estimated 

from the second order statistics of the received signal, a large num- 

ber of methods have been proposed for DOA estimation, e.g., MU- 

SIC [3] , ESPRIT [4] and their variants [5–8] . Although these meth- 

ods show super resolution ability in some certain scenarios, they 

often suffer from several limitations. For example, the so-called 

subspaced-based methods highly depend on the number of sources 

and the estimation accuracy of the covariance matrix of the array 

output and are, in general, sensitive to the number of snapshots 

and signal-to-noise ratio (SNR) as well. Furthermore, the correla- 

tion between the impinged signals may cause a rank deficiency 

problem in the sample covariance matrix, which may lead to a 

poor estimation performance. 
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Recently, by exploring the underlying connection between the 

sparse signal reconstruction (SSR) [9,10] and the DOA estimation, 

many sparse methods have been proposed by dividing the poten- 

tial angle space with a predefined set of dense grid points and as- 

suming the fact that the true DOAs exactly lie on the predefined 

grid [11–20] . With the help of SSR theory, these sparse methods 

are usually insensitive to the number of snapshots (most of them 

can correctly locate sources with a single snapshot) and the corre- 

lation between the sources. However, the set of grid points usually 

contains a finite number of atoms while the DOAs of the impinged 

sources are continuously valued, which leads to infinitely many 

atoms. The sparse methods then assume that the DOAs of the 

sources exactly lie on the grids and are also called on-grid method. 

This assumption, although widely employed by many sparse meth- 

ods, holds true only when the number of grid points is infinitely 

large. Consequently, there always exists an unavoidable bias be- 

tween the true DOA and its nearest grid point, namely, the bias 

mismatch issue is inherent in the on-grid methods. Using a set 

of dense grids is able to mitigate this basis mismatch issue but 

is not an appropriate choice since it not only increases the com- 

putational cost but also gives rises to the correlation issue. A high 

complexity may reduce the practicability of the algorithm while a 

high correlation may conflict with the restrict isometry property 
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(RIP) in the compressive sensing (CS) theory [21] . Therefore, al- 

most all the sparse methods choose the iterative grid refinement 

(IGR) procedure to find a balance between the accuracy and the ef- 

ficiency. The IGR uses an initial set of coarse grid points along with 

a sparse-based algorithm to obtain a coarse DOA estimate. It then 

refines the angle space division around the coarse DOA estimate 

with a new set of finer grid points and recalls the sparse-based al- 

gorithm to achieve a better DOA estimate. However, the use of a 

set of dense grid points in IGR would contradict the RIP condition 

required by the sparse algorithm. Hence, further improvement of 

the estimation performance of IGR is impossible. 

To address the basis mismatch issue, some so-called off-grid 

sparse methods have been proposed [22–26] . Compared to the on- 

grid methods, the discretization is still required in these methods 

but the DOAs of the sources are not restricted to lie on the grid. 

Instead, the bias is parameterized into the signal model by using 

the first order approximation of the manifold matrix. But the new 

model usually is nonconvex and hence is not easy to solve. For 

example, the nonconvex model in [22,23] has been solved from 

the sparse Bayesian learning (SBL) perspective. In [24–26] , an al- 

ternating procedure is adopted to solve the potential sources and 

biases. However, a difficult problem in [24] is the parameter tun- 

ing while the methods in [25,26] are time-consuming. In conclu- 

sion, the main focus of these methods has been to determine the 

biases. Recently, Tang et al. proposed a gridless method based on 

the atomic norm theory without requiring grid division [27] and 

showed that this method can be regarded as the sparse method 

with an infinite size of the grids, provided that the sources are suf- 

ficiently separated. Nevertheless, this precondition prohibits com- 

monly known high resolution of the DOA estimation requirement. 

We proposed a gridless method named as covariance matrix recon- 

struction approach (CMRA) by exploiting the Toeplitz structure of 

the covariance matrix of the array output [28,29] . Since it explores 

the maximum number of degrees of freedom (DOF), CMRA is able 

to locate more sources than sensors. 

In this paper, we address the DOA estimation problem in an off- 

grid mode under the sparse framework with an objective of aim- 

ing to overcome the grid mismatch limitation inherent in conven- 

tional sparse techniques. In particular, we start with a set of coarse 

grid points and then introduce a parameter to describe the bias be- 

tween the true DOA and its nearest grid point. The unknown DOAs 

are determined by its nearest grid point together with the corre- 

sponding bias. We propose a two-step iterative technique for joint 

sparse signal recovery and bias estimation. In the first step, we fix 

the bias and obtain the peak indices of the recovered sparse signal, 

while in the second step, we fix the sparse signal and determine 

the bias by deriving a closed-form solution. To formulate exactly 

the problem, we propose two methods based on the output of the 

array and its covariance matrix, named as off-grid � 1 Cholesky co- 

variance decomposition (OGL1CCD) and off-grid � 1 covariance ma- 

trix reconstruction approach (OGL1CMRA), respectively. In the first 

method, the complexity of the problem in step one is reduced by 

the dimensionality reduction technique. An update rule for the reg- 

ularization parameter is also proposed. In the second method, we 

derive the cramer-rao lower bound (CRLB) of the bias to show that 

the covariance-based model is able to achieve more accurate bias 

estimates if sufficient snapshots are collected. We also point out 

that, the dimensionality reduction and the parameter updating are 

not required in the second method. Furthermore, the proposed al- 

gorithm can be extended for any other sparse methods to improve 

their estimation accuracy. 

Notations used in this paper are as follows. A 

∗, A 

T , A 

H and A 

† 

denote the conjugate, transpose, conjugate transpose and pseudo- 

inverse of matrix A , respectively. A ( n ) denotes the n th row of A . 

vec( A ) denotes the vectorization operator that stacks matrix A col- 

umn by column. A ◦B , A �B and A �B are the Hadamard, Kronecker 

and Khatri-Rao products of matrices A and B . tr( •) is the trace op- 

erator. I N denotes the identity matrix of size N × N . ‖ A ‖ 1 and ‖ A ‖ F 
denote the � 1 -norm and Frobenius norm of A , respectively. A ≥ 0 

means that matrix A is positive semidefinite. For a vector x , ‖ x ‖ 2 
denotes the � 2 -norm of x . x �0 means that every entry of x is non- 

negative, diag( x ) denotes a diagonal matrix with its diagonal en- 

tries being the entries of vector x in turn. 

The rest of the paper is organized as follows. Section 2 revis- 

its the on-grid and off-grid models, followed by a CRLB analy- 

sis on the bias estimate. Section 3 presents the proposed iterative 

methods. A new covariance-based off-grid method is proposed in 

Section 4 . Simulations are carried out in Section 5 to demonstrate 

the performance of our methods. Finally, Section 6 concludes the 

whole paper. 

2. Off-grid signal model 

2.1. On-grid signal model 

Suppose that K narrowband far-field signals impinge onto an 

array with M omnidirectional sensors from directions of θ = 

{ θ1 , · · · , θK } simultaneously. The array output at time t , which is 

corrupted by additive circular complex Gaussian white noise, can 

be expressed as, 

x (t) = 

K ∑ 

k =1 

a (θk ) s k (t) + e (t) = A (θ) s (t) + e (t) , (1) 

where x (t) = [ x 1 (t ) , · · · , x M 

(t )] T is the array output, 

s (t) = [ s 1 (t ) , · · · , s K (t )] T is the signal waveform, A (θ) = 

[ a (θ1 ) , · · · , a (θK )] is the array manifold matrix, a (θk ) = 

[ e j2 π f 0 τk, 1 , · · · , e j2 π f 0 τk,M ] T contains the time-delay of the k th 

signal received at each sensor relative to the reference sensor, and 

e ( t ) is the complex independent white Gaussian noise with zero 

mean and variance σ I . 1 When L snapshots are collected, the array 

output can be given by 

X = A (θ) S + E, (2) 

where X = [ x (t 1 ) , · · · , x (t L )] , S = [ s (t 1 ) , · · · , s (t L )] and E = 

[ e (t 1 ) , · · · , e (t L )] . The goal is to determine the unknown DOAs 

θ given the array output X . 

Uniformly sampling the angle space generates a fixed finite set 

of N potential angles ϑ = { ϑ 1 , · · · , ϑ N } and a manifold dictionary 

Ā = [ a (ϑ 1 ) , · · · , a (ϑ N )] . Generally speaking, N is much greater than 

the incident sources number K and the sensors number M . We first 

assume θ ⊂ ϑ, i.e., all interested unknown DOAs exactly lie on the 

predefined grid. Thus, the array output in (2) can be reformulated 

as an multiple measurement vectors (MMV) model, 

X = Ā ̄S + E, (3) 

where S̄ is the extension of S from θ to ϑ with non-zero entries 

denoting the true sources locations. Since N � K , the signal S̄ is 

row-sparse. The problem of DOA estimation is now transformed 

into an SSR problem and the joint sparsity can be exploited for 

signal recovery. Usually, following the � 1 -norm optimization in a 

single measurement vector (SMV) problem, the � 2, 1 -norm, which 

is defined as ‖ X‖ 2 , 1 = 

∑ 

n ‖ X (n ) ‖ 2 , is expected to be an appropri- 

ate penalty. The problem is then formulated as, 

min 

S̄ 
λ
∥∥S̄ 
∥∥

2 , 1 
+ 

1 

2 

∥∥X − Ā ̄S 
∥∥2 

F 
, (4) 

where λ is the regularization parameter controlling the tradeoff

between the sparsity of the solution and the data fitting error. 

1 We have assumed that the noise variances σm (m = 1 , · · · , M) are equivalent, 

which is true in most scenarios. 
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