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a b s t r a c t 

In space-time adaptive processing (STAP), the selected training samples should have the same covariance 

matrix as the clutter of the cell under test (CUT). The traditional methods usually select samples whose 

waveforms are similar to that of the CUT. We notice that completely dissimilar waveforms may have the 

same covariance matrix. As a result, many valid samples are lost in traditional methods. So we propose a 

training samples selection method based on system identification. The proposed methods select samples 

with similar covariance matrices instead of similar waveforms. First, a samples selection model based 

on system identification is proposed. Then, the neural network is used to identify the clutter model of 

the CUT. Finally, samples are selected according to the output variance. Compared with the methods in 

[1, 2, 3, 4], the proposed method has the following advantages: (1) More than twice the valid training 

samples can be obtained; (2) The clutter suppression performance can be improved more than 2 dB for 

the measured data. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Space-time adaptive processing plays an important role in 

ground clutter suppression of airborne radar, communication inter- 

ference suppression [5–7] and weak target detection of sky-wave 

over-the-horizon radar [1,8,9] . 

In STAP, maximizing output signal-to-clutter-and-noise ratio 

(SCNR) is a key objective. The optimal weight vector of STAP is 

w = R 

−1 
CUT 

s / 
(
s H R 

−1 
CUT 

s 
)
, where s is the space-time steering vector of 

the target, R CUT denotes the clutter covariance matrix of the cell 

under test (CUT) [10] . However, R CUT is unknown and needs to be 

estimated by the selected training samples in practical application. 

To achieve an optimal performance, the selected training sam- 

ple should meet the following conditions: 

(1) R T S = R CUT , where R TS denotes the covariance matrix of the 

training sample. 

(2) The training samples should be sufficient, because the amount 

of training samples to achieve 3 dB optimal SCNR performance 

is approximately twice the dimensionality of STAP [11] . 

At present, training samples selection methods can be divided 

into three categories. The first is the power-selected training (PST) 

method [12] . It selects the samples with strong clutter power to 
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deepen the clutter notch. The second category is the generalized 

inner product (GIP) method [13] , which eliminates the samples 

through different clutter statistical characteristics from the CUT us- 

ing generalized inner product. The third is based on the waveform 

similarity [1–4] . 

Among them, the method based on the waveform similarity 

[1–4] attracts wide attention. It usually chooses the samples whose 

waveforms are similar to the CUT in time or frequency domain. In 

[1] , a method of training samples selection based on time-domain 

waveform similarity is proposed. It calculates the correlation coef- 

ficient between samples and the CUT in time domain, and those 

samples with the greater correlation coefficients are selected as 

the training samples. However, this method discards the dissim- 

ilar samples with the same covariance matrix as the CUT, which 

leads to the low utilization rate of samples. To solve this prob- 

lem, a weighted method is suggested in [2] . However, this method 

discards the dissimilar samples with the same covariance matrix 

as the CUT, which leads to the low utilization rate of samples. To 

solve this problem, a weighted method is suggested in [3,4] , the 

samples are selected according to the waveform similarity in fre- 

quency domain. This method chooses samples whose clutter spec- 

trums are similar to that of the CUT. 

We notice that the completely dissimilar signals can also have 

the same covariance matrix. The essence of the training samples 

selection problem is to find those samples with the same clut- 

ter covariance matrices as CUT rather than with the similar wave- 

forms. Therefore, the traditional methods based on waveform sim- 
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ilarity usually miss a large number of dissimilar samples with the 

same covariance matrix. 

Based on the above considerations, a training samples selection 

method based on system identification is proposed. First, a sam- 

ples selection model based on system identification is proposed. A 

neural network is further proposed to identify the clutter model of 

CUT, then the training samples are filtered by the identified clutter 

model. The samples with small output variance are selected as the 

training samples. Compared with the traditional methods based on 

waveform similarity in [1–4] , the proposed method has the follow- 

ing advantages: (1) The obtained valid training samples in the pro- 

posed method is more than twice those in [1–4] ; (2) The measured 

data demonstrates that the proposed method is 2 dB better than 

the methods in [1–4] . 

The remainder of this paper is organized as follows. Problem 

analysis is presented in Section 2 . In Section 3 , we derive our train- 

ing samples selection method. Then the simulation analysis of the 

measured data is presented in Section 4 . Finally, conclusions are 

drawn in Section 5 . 

2. Problem analysis 

Consider a linear antenna array with N uniformly spaced ele- 

ments, M pulses are transmitted in a coherent processing interval. 

The echo data r k from the k th range cell is: 

r k = ξk s ( ϕ, ω ) + c k + n k (1) 

where r k , c k , n k , s ( ϕ, ω) ∈ C MN , c k and n k are the clutter and the 

noise, respectively; ξ k is the target signal amplitude, s ( ϕ, ω) is the 

space-time steering vector of the target, which can be given by: 

s ( ϕ, ω ) = b ( ω ) � a ( ϕ ) (2) 

where � denotes the Kronecker product; b ( ω) is the tempo- 

ral steering vector at normalized Doppler frequency ω , b ( ω ) = [
1 e j2 πω · · · e j(M−1)2 πω 

]T ∈ C M×1 ; and a ( ϕ) denotes the angle steer- 

ing vector at spatial frequency ϕ , a ( ϕ ) = 

[
1 e j2 πϕ · · · e j(N−1)2 πϕ 

]T ∈ 

C N×1 . Further, a detailed expression for s ( ϕ, ω) can be given by: 

s ( ϕ, ω ) = 

[(
1 e j2 πϕ · · · e j(N−1)2 πϕ 

)
e j2 πω 

(
1 e j2 πϕ · · · e j(N−1)2 πϕ 

)
· · · e j(M−1)2 πω 

(
1 e j2 πϕ · · · e j(N−1)2 πϕ 

)]T 
(3) 

The clutter signal from the k th range is given by: 

c k = 

N a ∑ 

m =1 

N c ∑ 

n =1 

ξkmn s ( ϕ kmn , ω kmn ) (4) 

where N a denotes the number of ambiguous ranges, and N c indi- 

cates the number of clutter patches, ξ kmn is the complex amplitude 

and s ( ϕkmn , ω kmn ) denotes the corresponding space-time steering 

vector. 

The formulation for the optimal weight vector of STAP is: 

min { w } w 

H R CUT w , st. w 

H s ( ϕ, ω ) = 1 (5) 

where R CUT is the clutter covariance matrix in the cell under test 

r CUT , w is the MN-length weight vector and ( ·) H is the conjugate 

transpose. 

Therefore, the optimum weight w is: 

w = 

R 

−1 
CUT 

s ( ϕ, ω ) 

s ( ϕ, ω ) 
H R 

−1 
CUT 

s ( ϕ, ω ) 
(6) 

Since R CUT is generally unknown, we have to estimate it by the 

selected training samples r T S i , i = 1 , 2 , · · · , L, where L is the num- 

ber of the training samples. Let R T S i 
denote the clutter covariance 

matrix of r T S i and 

ˆ R CUT denote the estimate of R CUT , then we ob- 

tain: 

ˆ R CUT = 

1 

L 

L ∑ 

i =1 

R T S i (7) 

In order to achieve an optimal performance, the ideal train- 

ing samples should have the same clutter covariance matrix to the 

CUT, R T S i 
= R CUT and L ≥ 2 NM . 

However, in practical application, the statistical characteristics 

of training samples always deviate from the CUT due to the pres- 

ence of clutter discrete, terrain variations, and nonlinear array re- 

sponses. These factors will lead to fewer valid samples and perfor- 

mance degradation of STAP. This paper introduces a novel training 

samples selection method to obtain more valid samples and im- 

prove the performance of STAP. 

3. The proposed training samples selection method 

In this section, it is proved that two different range cells with 

the same clutter covariance matrix may have completely dissimilar 

clutter waveforms. Meanwhile, we further analyze the shortcom- 

ings of traditional samples selection methods. Then a criterion of 

having the same clutter covariance matrix is presented. Finally our 

training samples selection method based on system identification 

is proposed. 

3.1. Shortcomings of traditional methods 

In order to estimate the clutter covariance matrix accurately, 

the ideal training sample should satisfy R T S i 
= R CUT . The existing 

methods [1–4] select samples whose waveforms are similar to that 

of the CUT. However, same covariance matrices do not imply the 

waveforms are similar. 

Proposition 1. Two different range cells with the same clutter covari- 

ance matrix may have completely dissimilar clutter waveforms. 

Proof. Suppose there are two different range cells r k 1 and r k 2 , 

their clutter signal are denoted as x and y , respectively, x = 

( x 1 , x 2 , · · · , x l , · · · , x MN ) 
T and y = ( y 1 , y 2 , · · · , y l , · · · , y MN ) 

T 
, where 

l = u × N + v , u and v are integers, 1 ≤ v ≤ N , 0 ≤ u ≤ M − 1 . x l and 

y l are the l th elements of vectors x and y , which can be obtained 

from Eq. (4) as follows: 

x l = 

N a ∑ 

m =1 

N c ∑ 

n =1 

ξk 1 mn exp 

(
j2 π

(
u ω k 1 mn + ( v − 1 ) ϕ k 1 mn 

))

y l = 

N a ∑ 

m =1 

N c ∑ 

n =1 

ξk 2 mn exp 

(
j2 π

(
u ω k 2 mn + ( v − 1 ) ϕ k 2 mn 

))
(8) 

For short, the elements can be written as x l = | x l | e j θl , y l = 

| y l | e j βl , l = 1 , 2 , · · · , MN. Let R xx = E{ x x H } , R yy = E{ y y H } denote 

the covariance matrices of x and y , respectively. �

We assume that x x H = y y H can always be satisfied for any 
snapshots. Hence, we can get R xx = R yy . For simplicity, only the ex- 

pression for xx H is presented here: 

x x H = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

| x 1 | 2 | x 1 | | x 2 | e j ( θ1 −θ2 ) · · · | x 1 | | x MN | e j ( θ1 −θMN ) 

| x 2 | | x 1 | e j ( θ2 −θ1 ) | x 2 | 2 · · · | x 2 | | x MN | e j ( θ2 −θMN ) 

. 

. 

. 
. 
. 
. 

. . . 
. 
. 
. 

| x MN | | x 1 | e j ( θMN −θ1 ) | x MN | | x 2 | e j ( θMN −θ2 ) · · · | x MN | 2 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(9) 

Since x x H = y y H , the module and the angle of x and y satisfy 

the following relationship in Eqs. (10) and (11) . 

| y 1 | 2 = | x 1 | 2 , | y 2 | 2 = | x 2 | 2 , · · · | y MN | 2 = | x MN | 2 (10) 
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