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a b s t r a c t 

The classical result of Vandermonde decomposition of positive semidefinite Toeplitz matrices, which dates 

back to the early twentieth century, forms the basis of modern subspace and recent atomic norm meth- 

ods for frequency estimation. In this paper, we study the Vandermonde decomposition in which the fre- 

quencies are restricted to lie in a given interval, referred to as frequency-selective Vandermonde decom- 

position. The existence and uniqueness of the decomposition are studied under explicit conditions on 

the Toeplitz matrix. The new result is connected by duality to the positive real lemma for trigonometric 

polynomials nonnegative on the same frequency interval. Its applications in the theory of moments and 

line spectral estimation are illustrated. In particular, it provides a solution to the truncated trigonometric 

K -moment problem. It is used to derive a primal semidefinite program formulation of the frequency- 

selective atomic norm in which the frequencies are known a priori to lie in certain frequency bands. 

Numerical examples are also provided. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

A classical result discovered by Carathéodory and Fejér in 1911 

[1] states that, if an N × N Hermitian Toeplitz matrix T is positive 

semidefinite (PSD) and has rank r ≤ N , then it can be factorized as 

T = A P A 

H 
, (1) 

where P is an r × r positive definite diagonal matrix and A is an 

N × r Vandermonde matrix whose columns are discrete sinusoidal 

waves with distinct frequencies. Moreover, such a decomposition 

is unique if r < N . This Vandermonde decomposition result has be- 

come important for information and signal processing since the 

1970s when it was rediscovered by Pisarenko and used for fre- 

quency estimation by interpreting the Toeplitz matrix T as the 

data covariance matrix. The Vandermonde decomposition in (1) is 

therefore also referred to as the Carathéodory–Fejér–Pisarenko de- 

composition. As a result of this rediscovery, a class of methods 

have been developed for frequency estimation based on the signal 

subspace of a data covariance estimate, known as the subspace- 

based methods. Prominent examples are multiple signal classifi- 
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cation (MUSIC), estimation of parameters by rotational invariant 

techniques (ESPRIT) and various variants of them (see the review 

in [2] ). Besides, this decomposition result is important in moment 

theory, operator theory and system theory [3,4] . As an example, 

it can be applied to give a solution to the truncated trigonomet- 

ric moment problem (a.k.a. the moment problem on the unit circle 

given a finite moment sequence) [5] . 

In the past few years, a new class of methods for frequency 

estimation have been devised, namely the gridless sparse meth- 

ods (see the review in [6] ), in which the Vandermonde decom- 

position is evoked and plays an important role. It is well-known 

that sparse methods for frequency estimation developed in the 

past two decades exploit the signal sparsity, which arises natu- 

rally from the fact that the number of frequencies is small, and 

attempt to find, among all candidates consistent with the observed 

data, the solution consisting of the smallest number of frequencies. 

Since frequency estimation is a highly nonlinear problem and to 

overcome such nonlinearity, gridding in the continuous frequency 

domain used to be a standard ingredient of early sparse meth- 

ods, which transforms approximately the original nonlinear con- 

tinuous parameter estimation problem as a problem of sparse sig- 

nal recovery from a linear system of equations (see, e.g., [7,8] ). The 

newly developed gridless sparse methods completely avoid grid- 

ding, work directly in the continuous domain, and have strong the- 

oretical guarantees. These methods have been developed based on 
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the atomic norm [9–13] —a continuous analogue of the � 1 norm 

used in the early sparse methods—and covariance fitting [14] . A 

main difficulty of applying these gridless sparse methods under- 

lies in how to solve the nonlinearity problem, which makes the 

resulting optimization problems nonconvex with respect to the 

unknown frequencies. To do so, the key is to apply the Vander- 

monde decomposition of Toeplitz matrices to cast these optimiza- 

tion problems as semidefinite programs (SDP), in which the fre- 

quencies are encoded in a PSD Toeplitz matrix, as T in (1) . Once 

the SDP is solved, the frequencies are finally retrieved from the 

Vandermonde decomposition of the solved Toeplitz matrix. Note 

that the Vandermonde decomposition result has also been general- 

ized to high dimensions and used for multidimensional frequency 

estimation [15] . 

Notice that the frequencies in the Vandermonde decomposition 

in (1) may take any value in the normalized band [0, 1] (or the unit 

circle), in which 0 and 1 are identified. This paper is motivated by 

various practical applications in which the (normalized) frequen- 

cies can be known a priori to lie in certain frequency bands. For 

example, when a signal is oversampled by a factor, the frequen- 

cies will lie in a band narrowed by the same factor. Due to the 

path loss effect, the maximum value of the range/delay, which can 

be interpreted as a frequency parameter, of a detectable aircraft 

can be estimated in advance. Similarly, the maximum Doppler fre- 

quency can be obtained if the aircraft’s characteristic speed can be 

known. In underwater channel estimation, the frequency parame- 

ters of interest can reside in a known small interval [16] . Similar 

prior knowledge might also be available given weather observa- 

tions [17] . Therefore, it would be interesting to exploit such prior 

knowledge in gridless sparse methods for frequency estimation, 

and by doing so, the estimation accuracy is expected to improve. 

The important role of the Vandermonde decomposition in grid- 

less sparse methods encourages us to incorporate the prior interval 

knowledge into the decomposition. In other words, we ask the fol- 

lowing question: Can the frequencies in the Vandermonde decompo- 

sition of the Toeplitz matrix T , as in ( 1 ), be restricted to lie in a given 

interval I ⊂ [ 0 , 1 ] , instead of the entire domain [0, 1], under explicit 

conditions on T ? In fact, we also want the conditions to be convex 

due to our interest in optimization problems. The resulting decom- 

position is referred to as frequency-selective (FS) Vandermonde de- 

composition. The question asked above is challenging since, by (1) , 

T is a highly nonlinear function of the frequencies and it is unclear 

how to link T to a frequency interval I . 

It is interesting to note that similar questions have been in- 

vestigated in a class of moment problems known as truncated K - 

moment problems, a.k.a. truncated moment problems on a semial- 

gebraic set K , instead of on an entire domain [18] . When K is in the 

real or the complex domain, solutions to these problems have been 

successfully obtained [19,20] . To the best of our knowledge, how- 

ever, the problem is still open when K is defined on the unit circle 

[0, 1], which is known as the truncated trigonometric K -moment 

problem. In this paper, we show that the study of the FS Vander- 

monde decomposition can provide a solution to this open problem. 

In this paper, an affirmative answer is provided to the question 

asked above. Concretely, it is shown that a PSD Toeplitz matrix T 

admits an FS Vandermonde decomposition on a given interval if 

and only if T satisfies another linear matrix inequality (LMI). In- 

terestingly, this FS Vandermonde decomposition result is linked by 

duality to the positive real lemma (PRL) for trigonometric polyno- 

mials [21] . The usefulness of the new result is also demonstrated. 

In the theory of moments, it provides a solution to the truncated 

trigonometric K -moment problem. For frequency estimation with 

prior interval knowledge, it is used to derive a primal SDP formu- 

lation for the atomic norm exploiting the prior knowledge. Numer- 

ical examples are also provided. 

1.1. Related work 

This paper extends our conference paper [22] in which the FS 

Vandermonde decomposition of Toeplitz matrices was studied. In 

addition to this, we show in this paper the connection between 

the FS Vandermonde decomposition and the PRL for trigonometric 

polynomials. Its applications to the moment theory and frequency 

estimation are also studied in more detail. 

The problem of frequency estimation with restriction on the 

frequency band was studied in [23–25] . In [23] , an FS atomic norm 

formulation (or constrained atomic norm in the language of [23] ) 

was proposed and a dual SDP formulation was presented by apply- 

ing the theory of positive trigonometric polynomials. In contrast to 

this, we show in this paper that a primal SDP formulation of the 

FS atomic norm can be obtained by applying the new FS Vander- 

monde decomposition. In [24] , the interval prior was interpreted as 

a prior distribution of the frequencies and a weighted atomic norm 

approach was then devised that is an approximate but faster im- 

plementation of the FS atomic norm. Although the paper [25] does 

not provide or imply the FS Vandermonde decomposition result, it 

obtained independently a primal SDP formulation of the FS atomic 

norm based on a different technique. 

The paper [26] studied the super-resolution problem on semi- 

algebraic sets in the real domain and provided an SDP formula- 

tion of the resulting atomic norm. To do so, the key is to apply 

the moment theory on semialgebraic sets in the real domain (a.k.a. 

the truncated K -moment problem in the real domain). In contrast 

to this, we provide a first solution to the truncated trigonomet- 

ric K -moment problem and then apply this result to study super- 

resolution on semi-algebraic sets on the unit circle. 

1.2. Notations 

Notations used in this paper are as follows. R and C denote the 

set of real and complex numbers, respectively. T := [0 , 1] denotes 

the unit circle, in which 0 and 1 are identified. Boldface letters are 

reserved for vectors and matrices. | · | denotes the amplitude of a 

scalar or the cardinality of a set. ‖ · ‖ 1 , ‖ · ‖ 2 and ‖ · ‖ F denote the 

� 1 , � 2 and Frobenius norms respectively. A 

T and A 

H are the matrix 

transpose and conjugate transpose of A respectively. rank( A ) de- 

notes the rank and tr( A ) is the trace. For PSD matrices A and B , 

A ≥ B means that A − B is PSD. � and � return the real and the 

imaginary parts of a complex argument respectively. 

A Hermitian trigonometric polynomial of degree one is defined 

as: 

g(z) = r 1 z 
−1 + r 0 + r −1 z, r −1 = r 1 , r 0 ∈ R , (2) 

where z is a complex argument and · denotes the complex con- 

jugate operator. When z is on the unit circle, i.e., when z = e i 2 π f , 

f ∈ T , we write without ambiguity g ( f ) := g ( e i 2 π f ). It follows that 

g( f ) = r 1 e 
−i 2 π f + r 0 + r 1 e 

i 2 π f = r 0 + 2 � 

{
r 1 e 

−i 2 π f 
}
, (3) 

and g ( f ) is real on T . 

An N × N Toeplitz matrix T := T ( t ) := T ( N , t ) is formed by using 

a complex sequence t = 

[
t j 
]
, j = 1 − N, . . . , N − 1 and defined by 

T mn = t n −m 

, 0 ≤ m, n ≤ N − 1 . Given t and a degree-1 trigonometric 

polynomial g as defined in (2) , an (N − 1) × (N − 1) Toeplitz matrix 

T g := T g ( t ) := T g ( N , t ) is defined by 

[ T g ] mn = r 1 t n −m +1 + r 0 t n −m 

+ r −1 t n −m −1 , (4) 

0 ≤ m, n ≤ N − 2 . Also, let a ( f ) := a ( N, f ) := [1 , e i 2 π f , . . . , 

e i 2 π(N−1) f ] 
T 

denote a size- N discrete complex sinusoid with 

frequency f ∈ T . 
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