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a b s t r a c t 

In this paper, we propose a semi-supervised graph-based retargeted least squares regression model (SS- 

GReLSR) for multicategory classification. The main motivation behind SSGReLSR is to utilize a graph regu- 

larization to restrict the regression labels of ReLSR, such that similar samples should have similar regres- 

sion labels. However, in SSGReLSR, constructing the graph structure and learning the regression matrix 

are two independent processes, which can’t guarantee an overall optimum. To overcome this shortage of 

SSGReLSR, we also propose a semi-supervised graph learning retargeted least squares regression model 

(SSGLReLSR), where linear squares regression and graph construction are unified into a same framework 

to achieve an overall optimum. To optimize our proposed SSGLReLSR, an efficient iteration algorithm is 

proposed. Extensive experiments results confirm the effectiveness of our proposed methods. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Multicategory classification, where the aim is to assign a test 

sample into one of several classes, is an important task in the 

fields of computer vision and pattern recognition [1–8] . 

Least squares regressions (LSR) is a typical and fundamental 

technique for multicategory classification. First of all, given a la- 

beled sample matrix X = [ x 1 , x 2 , . . . , x n ] 
T ∈ R 

n ×d , where x i ∈ R 

d×1 

is a labeled sample, letting y i ∈ {1, 2, ���, c } be the class label 

of x i and c is the total number of classes. The aim of LSR is 

to learn a regression matrix W ∈ R 

d×c to represent the label 

matrix Y = [ y 1 , y 2 , . . . , y n ] 
T ∈ R 

n ×c , where y i is a label vector 

with 0 or 1 for the x i . If x i belongs to the class j , its label is 

y i = [0 , . . . , 0 , 1 , 0 , . . . , 0] with the j th element being equal to 1. As 

the following, the objective function of LSR is formulated as: 

min 

W 

‖ XW − Y ‖ 

2 
F + λ‖ W ‖ 

2 
F (1) 

where λ is a regularization parameter. The closed-form solution of 

LSR is represented as W = (X 

T X + λI ) −1 X 

T Y , where I ∈ R 

d×d is the 

identity matrix. Since LSR has simple yet effective formulation and 

is easy to obtain the closed-form solution, many variations have 

been proposed to improve the classification performance of LSR, 

such as kernel ridge regression [9] , partial LSR [10] , weighted LSR 

[11] , LASSO regression [12] , and nonnegative least squares [13] . 

To further utilize the class information, some discriminative LSR 

methods have been proposed to enhance the learning performance 
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of LSR. For example, Xiang et al. [14] propose a discriminative least 

squares regression (DLSR) model, which introduces a ε-dragging 

technique to yield the soft labels to enlarge the distance of the 

regression labels of different classes. Zhang et al. [15] present a 

framework of retargeted least squares regression (ReLSR), which 

directly learns the regression targets from data other than using 

the traditional zero-one matrix as regression targets. The objective 

function of ReLSR is formulated as: 

min 

W , T 
‖ XW − T ‖ 

2 
F + λ‖ W ‖ 

2 
F 

s.t. T i,y i − max 
j � = y i 

T i, j ≥ 1 , i = 1 , 2 , . . . , n (2) 

where the constraint of target matrix T is to guarantee that each 

labeled sample is correctly classified with the large margin, i.e., 

the margin between correct and incorrect classes should be larger 

than 1. 

Although these discriminative LSR methods improve the robust- 

ness and effectiveness of LSR, they only utilize the labeled samples. 

In real applications, there exist lots of unlabeled samples to help 

enhancing the classification performance of the existing regression 

methods. Therefore, in this paper, we propose a semi-supervised 

graph-based retargeted least squares regression model (SSGReLSR), 

which utilizes the graph structure of labeled and unlabeled sam- 

ples to restrict the regression labels of ReLSR for classification. 

However, in SSGReLSR, constructing the graph structure and learn- 

ing the regression matrix are two independent processes, which 

can’t guarantee an overall optimum. To overcome this shortage 

of SSGReLSR, we also propose a semi-supervised graph learning 

retargeted least squares regression method (SSGLReLSR), where 
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the processes of linear squares regression and graph construction 

are unified into a same framework so as to achieve an overall 

optimum. SSGLRELSR can be solved efficiently by an alternating 

optimization algorithm with guaranteed convergence. 

The rest of the paper is organized as follows. In Section 2 , 

we first introduce the mathematical model of SSGReLSR and 

SSGLReLSR, and then design an efficient iteration algorithm to 

solve the SSGLReLSR model. Experimental results are conducted 

and discussed in Section 3 . Finally, the conclusion of this paper is 

drawn in Section 4 . 

2. Proposed methods 

2.1. SSGReLSR 

Aforementioned ReLSR model only utilizes the information 

of labeled samples to learn the regression matrix, which be- 

longs to the supervised learning framework. However, in the 

real applications, they also exist lots of unlabeled samples, 

which can help to improve the learning performance of ReLSR. 

Letting Z = [ X , U ] = [ z 1 , z 2 , . . . , z m 

] ∈ R 

m ×d be a sample matrix, 

where X = [ z 1 , z 2 , . . . , z n ] ∈ R 

n ×d is the labeled sample matrix and 

U = [ z n +1 , z n +2 , . . . , z m 

] ∈ R 

(m −n ) ×d is the unlabeled sample matrix. 

To fully utilize these labeled and unlabeled samples, a reasonable 

assumption here is that similar samples z i and z j should have 

similar regression label vectors of these two samples, i.e., W 

T z i 
and W 

T z j . Based on the idea from manifold learning [16–18] , the 

class compactness graph is proposed to address this problem. The 

core idea is that the similar samples should be kept close together 

in the regression label space. This assumption is usually referred 

to as manifold assumption. 

Given a set of d -dimensional samples z 1 , . . . , z m 

, we can con- 

struct a graph G with m vertices, where each vertex represents a 

sample. Let S ∈ R 

m ×m be the weight matrix of G. In this paper, we 

adopt two common methods, i.e., k -nearest neighbors method and 

sparse representation method, to yield S as: 

• k-nearest neighbors : if z i is within the k nearest neighbors of 

z j or z j is within the k nearest neighbors of z i , S i, j = e 
− ‖ z i −z j ‖ 2 

2 σ2 , 

otherwise, S i, j = 0 . 
• Sparse representation : For sample matrix Z , its sparse matrix 

A is achieved by solving a nonnegative � 1 -norm optimization 

problem: 

min 

S 
‖ Z 

T − Z 

T A ‖ 

2 
F + α‖ A ‖ 1 

s.t. A ≥ 0 , A i,i = 0 , i = 1 , 2 , . . . , m. 

where α is a regularization parameter and A i,i = 0 is used to 

avoid the trivial solution. After obtaining the sparse matrix A , 

the weight matrix of Z is defined as S = 

A + A T 
2 . 

Consider the problem of mapping the weighted graph G to 

the regression label matrix ZW , the objective function of graph 

regularization is formulated as: 

1 

2 

m ∑ 

i =1 

m ∑ 

j=1 

‖ W 

T z i − W 

T z j ‖ 

2 
2 S i, j = Tr (W 

T Z 

T LZW ) (3) 

where L = D − S ∈ R 

m ×m is the graph Laplacian and D is a diagonal 

matrix and its diagonal entries are defined as D i,i = 

∑ m 

j=1 S i, j , 

i = 1 , 2 , . . . , m . 

By incorporating the graph constraint (3) into ReLSR, the 

objective function of SSGReLSR is formulated as: 

min 

W , T 
‖ XW − T ‖ 

2 
F + λ‖ W ‖ 

2 
F + λ1 Tr (W 

T Z 

T LZW ) 

s.t. T i,y i − max 
j � = y i 

T i, j ≥ 1 , i = 1 , 2 , . . . , n (4) 

where λ1 is a regularization parameter. 

2.2. SSGLReLSR 

For SSGReLSR, it predefines the graph structure and then uses 

it as a regularization term to learn the regression matrix W , 

which ignores the relationships between these two processes and 

can’t guarantee to obtain an overall optimum. To overcome this 

problem, we propose a semi-supervised graph learning ReLSR 

(SSGLReLSR) model, where the processes of graph construction 

and linear regression are unified into a same framework. The 

objective function of SSGLReLSR is formulated as: 

min 

W , T , S 
‖ XW − T ‖ 

2 
F + λ‖ W ‖ 

2 
F + λ1 

m ∑ 

i =1 

m ∑ 

j=1 

‖ W 

T z i − W 

T z j ‖ 

2 
2 S i, j 

+ ‖ Z 

T − Z 

T S ‖ 

2 
F 

s.t. S ≥ 0 , S i,i = 0 , T i,y i − max 
j � = y i 

T i, j ≥ 1 , i = 1 , 2 , . . . , n, (5) 

The first and second terms in (5) denote the ReLSR model. The 

third term ‖ W 

T z i − W 

T z j ‖ 2 2 S i, j builds a relationship between W 

and S , which allows the similar samples to have nearly similar 

regression label vectors. The fourth term in (5) is to proceed the 

linear reconstruction. The contribution of one sample to recon- 

struct another sample is a good indicator of similarity between 

these two samples [19] . Hence the reconstruction matrix S can be 

used to represent the weight matrix. Comparing with SSGReLSR, 

the regression matrix W and the weight matrix S in SSGLReLSR 

are optimized in the learning process simultaneously, which leads 

to an overall optimum. As the following, we design an effective it- 

eration algorithm to solve the optimization problem of SSGLReLSR. 

2.2.1. Computing W 

To compute W , we need to fix T and S . Then, the optimization 

problem of Eq. (5) is rewritten as: 

min 

W 

‖ XW − T ‖ 

2 
F + λ‖ W ‖ 

2 
F + λ1 

m ∑ 

i =1 

m ∑ 

j=1 

‖ W 

T z i − W 

T z j ‖ 

2 
2 S i, j (6) 

Then, the objective function of model (6) can be rewritten as: 

min 

W 

‖ XW − T ‖ 

2 
F + λ‖ W ‖ 

2 
F + λ1 Tr (W 

T Z 

T LZW ) (7) 

where L = D − (S + S T ) and D is a diagonal matrix and its diagonal 

entries are defined as D i,i = 

∑ m 

j=1 (S i, j + S j,i ) , i = 1 , 2 , . . . , m . If the 

derivative of model (7) with respect to W is set equal to zero, we 

can obtain: 

W = (X 

T X + λI + λ1 Z 

T LZ ) −1 X 

T T (8) 

where I ∈ R 

d×d is an identity matrix. 

2.2.2. Computing T 

To compute T , we need to fix W . Then, the optimization 

problem of SSGLReLSR is rewritten as: 

min 

T 
‖ XW − T ‖ 

2 
F 

s.t. T i,y i − max 
j � = y i 

T i, j ≥ 1 , i = 1 , 2 , . . . , n (9) 

which is the ReLSR model. The optimal target matrix T in (9) is 

solved by Algorithm 1 (i.e., Algorithm 2 in [15] ). 

2.2.3. Computing S 

To compute S , we need to fix W . Then, the optimization 

problem of SSGLReLSR is rewritten as: 

min 

s i 
‖ Z − ZS ‖ 

2 
F + λ1 

m ∑ 

i =1 

m ∑ 

j=1 

‖ W 

T z i − W 

T z j ‖ 

2 
2 S i, j 

s.t. S ≥ 0 , S i,i = 0 , i = 1 , 2 , . . . , m (10) 
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