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a b s t r a c t 

The Bayesian estimation of the unknown parameters of state-space (dynamical) systems has received 

considerable attention over the past decade, with a handful of powerful algorithms being introduced. In 

this paper we tackle the theoretical analysis of the recently proposed nonlinear population Monte Carlo 

(NPMC). This is an iterative importance sampling scheme whose key features, compared to conventional 

importance samplers, are (i) the approximate computation of the importance weights (IWs) assigned to 

the Monte Carlo samples and (ii) the nonlinear transformation of these IWs in order to prevent the de- 

generacy problem that flaws the performance of conventional importance samplers. The contribution of 

the present paper is a rigorous proof of convergence of the nonlinear IS (NIS) scheme as the number of 

Monte Carlo samples, M , increases. Our analysis reveals that the NIS approximation errors converge to 0 

almost surely and with the optimal Monte Carlo rate of M 

− 1 
2 . Moreover, we prove that this is achieved 

even when the mean estimation error of the IWs remains constant, a property that has been termed 

exact approximation in the Markov chain Monte Carlo literature. We illustrate these theoretical results 

by means of a computer simulation example involving the estimation of the parameters of a state-space 

model typically used for target tracking. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The estimation of the static unknown parameters of state-space 

dynamic models is a classical problem in statistical signal process- 

ing [1–6] which has also received considerable attention, very re- 

cently, from the computational statistics community [7–9] (see also 

[10] for a recent survey) partly because of the ubiquity of the prob- 

lem in science and engineering and partly because of the availabil- 

ity of more powerful computational resources to address it. 

The particle Markov chain Monte Carlo (pMCMC) method, orig- 

inally proposed in [7] , has gained popularity in the signal pro- 

cessing community [6,11–14] . This is a Markov chain Monte Carlo 

(MCMC) algorithm [15] where the target probability density func- 

tion (pdf) is the posterior density of the unknown parameters 

conditional on the available observations. This pdf is analyti- 

cally intractable and, hence, it is approximated (for each ele- 

ment of the chain) via particle filtering [16–20] . The most popular 

MCMC schemes (including Metropolis and Metropolis-Hastings al- 

gorithms) admit a pMCMC implementation. A key feature of these 
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methods is that they have the so-called exact approximation prop- 

erty. This means that, even if the acceptance test of the MCMC 

algorithm is only approximate (since the true target pdf is in- 

tractable), the stationary distribution of the Markov chain is still 

the actual posterior density of the parameters. While popular, pM- 

CMC procedures suffer from the same limitations as regular MCMC 

schemes [15,21] : 

• Convergence of the chain is purely asymptotic and potentially 

slow: we need to generate a chain that is long enough to con- 

verge to its stationary distribution; then we need to generate 

a sufficiently large number of additional samples in the chain 

to compute any desired estimators. There are no known con- 

vergence rates, neither for the convergence of the chain to its 

stationary distribution nor for the convergence of the resulting 

Monte Carlo estimators. 
• The Monte Carlo samples in the chain are correlated (hence the 

difficulty to obtain theoretical convergence rates). Correlation 

reduces the accuracy of estimators compared to methods that 

produce independent samples. 
• If the target pdf is multimodal, MCMC algorithms may get 

trapped in local maxima of the function. 

An alternative to pMCMC methods is to employ schemes based 

on importance sampling (IS) [21] . This class of techniques includes 
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population Monte Carlo (PMC) [22] , the sequential Monte Carlo 

square (SMC 

2 ) of [23] or the nested particle filter of [9] . In general, 

IS methods aim at approximating a complicated, or directly in- 

tractable, target probability distribution by generating Monte Carlo 

samples from a simpler proposal distribution (different from the 

target). The samples are assigned importance weights (IWs) in or- 

der to account for the mismatch between the target and the pro- 

posal. Note that, in the setup of interest in this paper, the target is 

the posterior distribution of the unknown parameters of the state- 

space model. 

The family of PMC methods includes adaptive IS schemes in 

which the proposal functions used to generate the samples are im- 

proved across a number of iterations [24–26] . The intuition behind 

this approach is rather straightforward: if we are able to produce 

an initial approximation of the target probability via IS, using some 

starting proposal distribution, then we should be able to use that 

approximation in order to design an improved proposal (e.g., closer 

to the target) that we can use to apply IS again and obtain an 

improved approximation. See [27–30] for recent applications, and 

new developments, of this methodology in statistical signal pro- 

cessing. 

The SMC 

2 method is a generalisation of the iterative batch im- 

portance sampling (IBIS) algorithm of [31] . It mimics the standard 

particle filter, but the Monte Carlo samples are drawn from the 

space of the (static) parameters and they are sequentially updated 

using a pMCMC kernel. All these methods, including SMC 

2 , are 

batch, meaning that the whole record of observations is typically 

processed many times. A purely recursive version of the SMC 

2 al- 

gorithm has been proposed in [9] . The reduction in computational 

complexity, however, is obtained at the expense of a reduction in 

the convergence rate of the algorithm. It is worth mentioning that 

all these techniques (including pMCMC) can be fit within the the- 

oretical framework of sequential Monte Carlo samplers introduced 

in [32] . 

The key feature of IS-based methods is the use of almost- 

arbitrary proposal functions to generate Monte Carlo samples and 

the computation of IWs for these samples. While this is a very 

flexible approach, it suffers from the well-known problem of de- 

generacy of the IWs [8,18,21,33] : when the target pdf is concen- 

trated in a very small region of the space of the unknowns, the 

largest IW tends to be orders of magnitude greater than all other 

IWs. As a result the IS-based scheme practically yields a degener- 

ate one-sample approximation. 

In this paper we address the analysis of the nonlinear popu- 

lation Monte Carlo (NPMC) algorithm proposed in [8] . This is a 

PMC-type method, in which the proposal functions are adapted 

(intuitively, to be closer to the target) through an iterative scheme. 

The key feature of the NPMC algorithm is that the IWs undergo a 

nonlinear transformation to control their variance and, in this way, 

mitigate the degeneracy problem. In [8] it was proved that the ap- 

proximation of the target distribution produced at each iteration 

of the NPMC method converges asymptotically, with the number 

of Monte Carlo samples M , and almost surely (a.s.). Therefore, the 

weight transformation preserves asymptotic convergence, while it 

has been shown through numerical examples that performance for 

finite M is consistently improved compared to conventional PMC 

procedures. The analysis in [8] , however 

• relies on the exact computation of the IWs, which is not feasi- 

ble for general state-space models, 
• and does not provide explicit convergence rates 1 

In this paper we analyse the performance of NPMC methods 

for the Bayesian estimation of the unknown parameters of state 

1 Error rates are found in [8] for convergence in probability (not for almost sure 

convergence) when the IWs are computed exactly. 

space models. In the vein of [8] , we focus on the convergence of 

the IS estimators with transformed weights, for a fixed iteration, as 

the number of samples is increased (we do not analyse the con- 

vergence of the iterative process for a fixed number of samples). 

Based on an unbiasedness property of particle filters, we prove 

that IS with nonlinearly-transformed IWs also yields asymptotic 

convergence when the weights are approximate, i.e., computed via 

a particle filter with a fixed computational budget that introduces 

non-vanishing errors. In other words, we prove that the nonlinear 

importance sampler enjoys the same exact approximation property 

as pMCMC and SMC 

2 algorithms. Moreover, the analysis of this pa- 

per also extends considerably the results of [8] by obtaining an 

explicit (and almost sure) estimation error rate of order M 

− 1 
2 

+ ε, 

where ε > 0 is an arbitrarily small constant. This result holds for 

approximate weights and under mild assumptions typical of clas- 

sic IS analyses. It is worth mentioning that the analytical approach 

developed in this paper can be applied, in a rather natural way, to 

the study of recently proposed PMC-like algorithms [28,34] when 

the target distribution is the posterior density of the parameters of 

a state space model. 

The rest of the paper is organised as follows. The necessary 

background material, including notation, state-space models and 

particle filters, is presented in Section 2 . The nonlinear IS scheme 

and its iterative implementation (the NPMC algorithm) are detailed 

in Section 3 for the case in which the target probability distribution 

is the posterior distribution of the unknown parameters of a state- 

space model. In Section 4 we introduce the new analytical results 

on the convergence of nonlinear importance samplers, which is the 

main contribution of the paper. We illustrate the exact approxima- 

tion property, and numerically compare the NPMC algorithm with 

a pMCMC scheme through computer simulations for a target track- 

ing model in Section 5 . Finally, some brief concluding remarks are 

made in Section 6 . 

2. Background and problem statement 

2.1. State-space model 

A Markov state-space model consists of two sequences of ran- 

dom variables (r.v.’s), { x n } n ≥ 0 and { y n } n ≥ 1 . The first sequence, { x n }, 

is termed the system state. We assume it takes values on some 

space X ⊆ R 

d x , hence x n is a random d x × 1 vector. The state dy- 

namics are described by a prior probability measure K 0 ( d x 0 ) and 

a sequence of Markov kernels K n,θ (d x n | x n −1 ) that depend on a pa- 

rameter vector θ ∈ S ⊂ R 

d θ . In this paper, θ is assumed unknown 

and modelled as a random vector, with prior pdf p 0 ( θ ) with re- 

spect to (w.r.t.) the Lebesgue measure. The support set of the pa- 

rameter vector, S , is assumed to be compact. 

The state x n cannot be observed directly. Instead, some noisy 

observations y n ∈ Y ⊆ R 

d y , n = 1 , 2 , . . . , are collected. We note that 

y n is a d y × 1 vector, with d y � = d x in general. 

We assume that the observations are conditionally independent 

given the system states and the parameter vector θ , with a con- 

ditional pdf w.r.t. the Lebesgue measure, denoted l n, θ ( y n | x n ) > 0, 

which depends on the parameter vector θ as well. 

2.2. The optimal filter and its Monte Carlo approximation 

Let y 1: n = { y 1 , . . . , y n } denote the sequence of observations col- 

lected up the time n . The posterior probability measure of the state 

x n conditional on the observations y 1: n and the parameter vector 

θ is denoted πn, θ , i.e., for any Borel set A ⊂ X , 

πn,θ (A ) = 

∫ 
A 

πn,θ (d x ) (1) 

is the posterior probability of the event “x n ∈ A ”, given θ and y 1: n . 
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