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a b s t r a c t 

In this paper, Slepian-Bangs-type formulas for Complex Elliptically Symmetric distributed (CES) data vec- 

tors in the presence of model misspecification are provided. The basic Slepian-Bangs (SB) formula has 

been introduced in the array processing literature as a convenient and compact representation of the 

Fisher Information Matrix (FIM) for parameter estimation under (parametric) Gaussian data model. Ex- 

tending recent results on this topic, in this paper, we provide a new generalization of the classical SB 

formula to parametric estimation problems involving non-Gaussian, heavy-tailed, CES distributed data in 

the presence of model misspecification. Moreover, we show that our proposed formulas encompass the 

special cases of the SB formula for CES distributions under perfect model specification, the SB formulas 

in the presence of misspecified Gaussian models, and the SB formula for the estimation of the scatter 

matrix of a set of CES distributed data under misspecification of the density generator. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The asymptotic performance analysis of an estimation algo- 

rithm mostly relies on two simplified assumptions: i ) the data are 

assumed to be Gaussian distributed and ii ) the data model used to 

derive the estimation algorithm is supposed to be correctly speci- 

fied , that is the probability density function (pdf) assumed to de- 

rive an estimator of the parameters of interest and the true pdf 

that statistically characterizes the data are exactly the same. 

Although these assumptions guarantee the possibility to per- 

form ”elegant” performance assessment, e.g. by evaluating the 

Cramér-Rao Bound (CRB) for the estimation problem at hand 

and/or by obtaining a closed form expression for the Mean Square 

Error (MSE) of a given estimator, the everyday engineering practice 

clearly calls the hypotheses i ) and ii ) into question. Regarding the 

Gaussian model assumption, large-scale measurement campaigns 

and the subsequent statistical analysis of the data gathered from 

a plethora of engineering applications, e.g. outdoor/indoor mobile 

communications, radar/sonar systems or magnetic resonance imag- 
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ing (MRI), have highlighted the impulsive, heavy-tailed behaviour 

of the observations [1] . These experimental evidences have mo- 

tivated the need to go beyond the Gaussian model and develop 

new statistical models able to better characterize the data. One of 

the more flexible and general non-Gaussian model is represented 

by the set of the Complex Elliptically Symmetric (CES) distribu- 

tions [2] , also called Multivariate Elliptically Contoured distribu- 

tions [3] . CES distributions encompasses the complex Gaussian, the 

Generalized Gaussian and all the Compound Gaussian (CG) distri- 

butions, such as the complex t -distribution and the K -distribution, 

as special cases. The pdf of a CES distributed N -dimensional ran- 

dom vector x l ∈ C 

N is completely characterized by the mean value 

γ , the scatter (or shape) matrix � and by a real valued function 

w (t) : R 

+ → R , called the density generator , i.e. x l ∼ CES N ( γ , �, w ) 

[2,3] . The CES distributions have been used in a variety of applica- 

tions, in particular in the radar and array signal processing fields. 

Other experimental evidences reveal recurring violations of the 

matched model assumption, that is the claim of a perfect match 

between the assumed and the true data model. The mathemati- 

cal bases of a formal theory of the parameter estimation under 

model misspecification has been firstly developed by statisticians 

as Huber [4] , White [5] and Vuong [6] and recently rediscovered 

by the Signal Processing (SP) community [7–9] and applied to a va- 
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riety of well-known engineering problems: to Direction-of-Arrival 

(DoA) estimation in array and MIMO processing [7,10] , to covari- 

ance/scatter matrix estimation in CES distributed data [8,11,12] , to 

radar-communication systems coexistence [13] and to waveform 

parameter estimation in the presence of uncertainty in the prop- 

agation model [14] , just to name a few. 

This brief discussion clearly highlights the need to overtake 

both the Gaussian and the matched model assumptions while as- 

sessing the (asymptotic) performance of an estimator. As exten- 

sively discussed in the SP literature, one of the main tool for the 

performance assessment is the CRB that provides a lower bound 

to the MSE achievable by any unbiased estimator for a given esti- 

mation problem (see e.g. [15] ). Under the matched model assump- 

tion, the CRB can be evaluated as the inverse of the Fisher Infor- 

mation Matrix (FIM), then having a convenient and easy way to 

evaluate the FIM would be of great practical utility. To this end, 

in array processing applications, the celebrated Slepian-Bangs (SB) 

formula has been introduced. Developed in the seminal works of 

Slepian [16] and Bangs [17] , the SB formula provides a useful and 

compact expression of the FIM for vector parameter estimation un- 

der both Gaussian and matched model assumptions [15, Chapter 3, 

Appendix 3C] . Specifically, let θ ∈ � ⊂ R 

d be a d -dimensional, de- 

terministic parameter vector and let x = { x l } L l=1 
with x l ∈ C 

N , be 

a set of L independent (possibly) complex random vectors, usually 

called snapshots , representing the available observations. If we as- 

sume that each snapshot follows a (complex) Gaussian parametric 

model, such that x l ∼ CN (γ(θ) , �(θ)) , then the FIM for the esti- 

mation of θ ∈ � can be expressed by means of the SB formula. 

The first generalization of the SB formula to a non-Gaussian, but 

still perfectly matched, data model has been proposed by Besson 

and Abramovich in [18] . Specifically, Besson and Abramovich de- 

rived a compact expression for the FIM for the estimation of θ ∈ �

when each snapshot x l is characterized by a parametric CES dis- 

tribution, i.e. x l ∼ CES N ( γ l ( θ), �( θ), w ). Note that the functional 

form of the parametrized mean value γ l ( θ) is allowed to vary from 

snapshot to snapshot, while the covariance matrix is assumed to 

be constant. Clearly, since the Gaussian model belongs to the CES 

class, this generalized SB formula collapses to the classical one if 

the data are Gaussian distributed. 

The second important step ahead has been made by Rich- 

mond and Horowitz in [7] and then by Parker and Richmond 

in [14] where the classical, Gaussian-based, SB formula has 

been extended to estimation problems under model misspecifi- 

cation, i.e. when the assumed parametric Gaussian model, say 

CN (γ(θ) , �(θ)) , could differ from the true (possibly non para- 

metric) one, indicated as CN (μ, �) . In other words, we allow 

the assumed parametric mean value γ( θ) and the assumed para- 

metric covariance matrix �( θ) to differ from the true μ and 

� for every possible value of the parameter vector θ ∈ �, i.e. 

CN (γ(θ) , �(θ)) � = CN (μ, �) , ∀ θ ∈ �. It is worth to underline that 

in the estimation framework under model misspecification, the 

FIM loses its classical statistical sense and it has to be sub- 

stituted by the matrices A ( θ) and B ( θ) defined in [8] , Eqs. (1) 

and (7), respectively (see also [6,7] ). Consequently, in this con- 

text, SB-type formulas could be exploited to obtain A ( θ) and 

B ( θ) needed to evaluate the counterpart of the CRB in the pres- 

ence of model misspecification, i.e. the Misspecified CRB (MCRB) 

[4,6–8,11] . In particular, in [7] the authors derived SB-type for- 

mulas for the ”decoupled” scenario in which the unknown pa- 

rameter vector θ ∈ � can be partitioned in two sub-vectors η
and ν, named ”deterministic” and ”stochastic” parameter sub- 

vectors respectively, such that θ = [ ηT , νT ] T and CN (γ(θ) , �(θ)) � 

CN (γ(η) , �(ν)) � = CN (μ, �) , ∀ θ ∈ �. The findings presented in 

[7] have been extended in [14] to include the coupling 

of deterministic and stochastic parameters. More formally, in 

[14] , SB-type formulas have been derived for the following 

misspecified scenario CN (γ(θ) , �(θ)) � CN (γ(η, ω) , �(ν, ω)) � = 

CN (μ, �) , ∀ θ ∈ � where the unknown parameter vector θ ∈ � is 

partitioned as θ = [ ηT , νT , ω 

T ] T . 

The natural extension of the works of Besson and Abramovich 

[18] , Richmond and Horowitz [7] and Parker and Richmond 

[14] would be to derive SB-type formulas for parametric estimation 

problems involving CES distributed data under model misspecifica- 

tion. This paper aims exactly at filling this gap and obtaining some 

general ”misspecified” SB formulas for CES distributed data. 

Remark : Throughout this paper, we consider only the case of 

real parameter vectors. This is not a limitation, since we can always 

maps a complex vector in a real one simply by stacking its real and 

the imaginary parts. Clearly, the proposed derivation of the SB-type 

formulas could also be developed directly in the complex field by 

means of the Wirtinger calculus as in [7,19] . 

Notation : Throughout this paper, italics indicates scalar quan- 

tities ( a, A ), lower case and upper case boldface indicate column 

vectors ( a ) and matrices ( A ) respectively. Each entry of a matrix 

A is indicated as a i, j � [ A ] i, j . 
∗ indicates the complex conjugation. 

The superscripts T and H indicates the transpose and the Her- 

mitian operators, then A 

H = ( A 

∗) T . Let f ( t ) be a real scalar func- 

tion, than f ′ ( t ) � df ( t )/ dt . Let A ( θ) be a matrix (or possibly vector 

or even scalar) function of the vector θ, then A 0 � A ( θ0 ) while 

A 

0 
i 
� 

∂A (θ) 
∂θi 

| θ= θ0 
and A 

0 
i j 
� 

∂ 2 A (θ) 
∂θi ∂θ j 

| θ= θ0 
, where the vector θ0 will be 

always explicitly defined in the paper. For two matrices A and B, 

A ≥ B means that A − B is positive semi-definite. Finally, for ran- 

dom variables or vectors, the notation = d stands for “has the same 

distribution as”. 

2. Problem setup 

Let x = { x l } L l=1 
, with x l ∈ C 

N , be a set of L independent com- 

plex random vectors (or snapshots ) representing the available ob- 

servations. We assume that each snapshot is sampled from a CES 

distribution [2,3] , i.e., x l ∼ CES N ( μl , �, g ), then its pdf can be ex- 

pressed as: 

p X (x l ) � p X (x l ;μl , �) = c N,g | �| −1 g((x l − μl ) 
H �−1 (x l − μl )) (1) 

where c N, g is a normalizing constant, g(t) : R 

+ → R is the density 

generator , μl = E p { x l } is the mean value and � is a positive defi- 

nite Hermitian matrix called scatter matrix . In the rest of this pa- 

per, we always assume that the scatter matrix � is of full rank, 

i.e. rank ( �) = N. From the Stochastic Representation Theorem [2] , 

a CES distributed random vector can be expressed as: 

x l = d μl + R Tu l , (2) 

where: 

• u l ∼ U(C S N ) is a N -dimensional complex random vector uni- 

formly distributed on the unit hyper-sphere with N − 1 topo- 

logical dimension. As reported in [2] (Lemma 1), E p { u l } = 0 and 

E p 
{

u l u 

H 
l 

}
= (1 /N) I where I is the identity matrix of a suitable 

dimension. 
• R � 

√ 

Q is a real and non-negative random variable called mod- 

ular variate , while Q is called second order modular variate . 

Moreover, under the assumption that rank (�) = N, we have 

that: 

Q l � (x l − μl ) 
H �−1 (x l − μl ) = d Q , ∀ l ∈ N . (3) 

As shown in [2] , the pdf of Q has a one-to-one relation with 

density generator: 

p Q (t) = δ−1 
N,g t 

N−1 g(t) , (4) 

where δN,g � 

∫ ∞ 

0 t N−1 g(t) dt < ∞ . As a consequence of (3) and 

(4) , the expectation of functions of the quadratic form Q l , say 
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