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a b s t r a c t 

Fractional adaptive algorithms have given rise to new dimensions in parameter estimation of control 

and signal processing systems. In this paper, we present novel fractional calculus based LMS algorithm 

with fast convergence properties and potential ability to avoid being trapped into local minima. We test 

our proposed algorithm for parameter estimation of power signals and compare it with other state-of- 

the-art fractional and standard LMS algorithms under different noisy conditions. Our proposed algorithm 

outperforms other LMS algorithms in terms of convergence rate and accuracy. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Integer order adaptive signal processing algorithms have their 

benefits for many signal processing, physical processes and control 

applications. One well-known algorithm based upon gradient de- 

scent is Least Mean Square (LMS) algorithm [1] . Many variations 

of the standard LMS have been proposed in the literature to im- 

prove its convergence properties and estimation accuracy [2] . All 

these algorithms are based on integer order gradients which find 

the trajectory of the solution to the optimum value in the negative 

direction of the gradient. 

Recently, a graceful number of research activities have emerged 

in applying fractional order calculus for the design of adaptive al- 

gorithms. The fractional order adaptive algorithms have shown im- 

proved performance in various engineering applications compared 

to integer order LMS based algorithms [3,4] . In this paper, we de- 

sign a new fractional LMS algorithm with improved convergence 

properties as compared to standard LMS and state-of-the-art frac- 

tional LMS algorithms. 

1.1. Related work 

Fractional order calculus has equally evolved in parallel with 

integer order calculus in the field of mathematics. Its application 

in the field of sciences and engineering was initiated in [5] . Since 

then, it has been applied in a variety of domains where integer 

∗ Corresponding author. 

E-mail addresses: szubair@iiu.edu.pk , szgilani@gmail.com (S. Zubair), naveed. 

ishtiaq@iiu.edu.pk (N.I. Chaudhary), zeeshan.aslam@iiu.edu.pk (Z.A. Khan), w.wang 

@surrey.ac.uk (W. Wang). 

order adaptive algorithms were applied ranging from signal pro- 

cessing [6,7] , biomedical problems [8] , control [9,10] , to physical 

processes [11,12] . The newly evolved fractional adaptive algorithms 

borrow their ideas from LMS algorithm and its variants by intro- 

ducing different ways for step-size calculation and weights updat- 

ing mechanisms. For example, fractional least mean square (FLMS) 

identification algorithm was developed by exploiting the theories 

of fractional calculus for weights update in standard LMS [3] . 

The FLMS update equation includes integer order gradient as 

well as the fractional order gradient. The trade-off between these 

two gradients is suggested in [13] that adds a proportion of each 

gradient according to the value of a forgetting factor. This results 

in better convergence as compared to the original FLMS in [3] . The 

convergence properties of FLMS is further improved by introducing 

a sliding window which also includes previous values of the input 

in addition to the current input values [14] . To reduce the com- 

putational complexity, works in [15] include only fractional part 

of the gradient in the weight update equation. By omitting the 

integer order gradient and retaining only the fractional part, the 

overall convergence is not affected but the computational com- 

plexity caused by the integer order gradient is reduced. The frac- 

tional order used in the algorithms so far lies in the range ∈ (0,1) 

and as fractional order approaches to 1, convergence rate increases. 

However, higher fractional order also increases the steady state er- 

ror. This behavior of rapidity and accuracy was further studied in 

[16] for fractional order ∈ (1,1.5). The authors found that the same 

behavior of rapidity and accuracy is observed as in the original 

FLMS [3] . Modified LMS [17] was extended to fractional version in 

[18] . 
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The above discussion shows that different variants of LMS have 

been extended to fractional order and their properties were stud- 

ied. In this study, we extend momentum LMS (mLMS) [19] to frac- 

tional order and empirically study its convergence properties and 

estimation accuracy for sinusoidal signal modeling. The mLMS up- 

dates the weights by incorporating proportion of the previously 

calculated gradients in the current update step. This increases the 

convergence rate of the mLMS as compared to the standard LMS. 

By incorporating these previously calculated gradients in the cur- 

rent weights update step of the standard FLMS algorithm [3] , we 

also intend to improve the convergence properties of the FLMS and 

name it as momentum FLMS (mFLMS). 

Many parameter estimation techniques exist in the literature 

for different applications [20–23] . Recently some new methods 

have been introduced in [24–28] . To demonstrate promising prop- 

erties of the proposed method, we consider the application of sig- 

nal modeling and parameter estimation of sinusiodal signals which 

are important for reliability assessment and quality monitoring of 

power systems. Frequency, as one of the parameters, is impor- 

tant to be estimated for harmonic measurement and compensation 

[29] and in phase lock loops (PLL) for grid signal synchronization 

with system output [30] . The amplitude estimate is used in fault 

detection algorithms [31] and in under/over voltage protection al- 

gorithms [32] . The phase estimate is used in different scenarios 

such as PLL algorithms [33] and in the generation of control signals 

in a controller [34] . Recently, a novel stochastic gradient algorithm 

has been proposed for estimating the parameters of the sine com- 

bination signal modeling, and further a multi-innovation stochastic 

gradient parameter estimation method is presented by expanding 

the scalar innovation into the innovation vector for improving the 

estimation accuracy [35] . Here we apply our proposed algorithm 

on parameter estimation problem of power signals and compare it 

with LMS, mLMS and FLMS. 

1.2. Our contribution 

Inspired by different variations in LMS to improve its conver- 

gence and parameter estimation properties [36] , we also incorpo- 

rate an adaptation term in standard fractional LMS (FLMS) [3] and 

study its convergence properties and estimation accuracy. We de- 

sign momemtum fractional LMS (mFLMS) in which a momentum 

term is incorporated with standard FLMS that increases the speed 

of the convergence and has the ability to avoid trapping in local 

minima. This work is different from [36] where momentum term 

is used with simple (non-fractional) LMS (mLMS). To show the per- 

formance of the proposed algorithm, the mFLMS is applied to es- 

timate magnitude and phase of a sinusoidal signal [35] which is a 

combination of different sinusoidal harmonics having different am- 

plitudes and phases. We compare its performance with fractional 

LMS (FLMS), momemtum LMS (mLMS) and LMS algorithms with 

varying learning rate parameters and under different noise con- 

ditions. This is also different from the works in [14,15] where no 

momentum term is used. 

1.3. Paper outline 

The paper is organized as follows: Section 2 gives brief descrip- 

tion about FLMS. Section 3 describes the design of mFLMS and its 

derivation for power signal. Section 4 gives experimental details 

followed by results and discussion. Finally, the paper is concluded 

in Section 6 . 

2. Fractional order least mean squares (FLMS) 

Application of fractional calculus to standard LMS algorithm 

have given rise to FLMS algorithm [3] where apart from taking 

simple integer order derivative, the fractional order derivative is 

also used to calculate fractional order gradients for the minimiza- 

tion of objective function. Let y ( n ) be the estimated signal, d ( n ) be 

the desired signal and e ( n ) be the error signal, then the objective 

function for the minimization of the error is: 

J(n ) = E[ e (n ) 2 ] = E[ d(n ) − y (n )] 2 (1) 

where E [ ·] is the expectation. The estimated output y ( n ) is written 

as: 

y ( n ) = 

̂ w 

T ( n ) u ( n ) (2) 

where ˆ w is the estimated weight vector and u is the input vector. 

To find the weights, we need to minimize objective function (1) 

with respect to ˆ w , given as: 

∂ J(n ) 

∂ ˆ w 

= 2 e (n ) 
∂e (n ) 

∂ ˆ w 

(3) 

Substituting e ( n ) in above equation: 

∂ J ( n ) 

∂ ̂  w 

= 2 e ( n ) 
∂ 

∂ ̂  w 

(
d ( n ) − ̂ w 

T ( n ) u ( n ) 
)

(4) 

After simplifying (4) : 

∂ J(n ) 

∂ ˆ w 

= −2 e (n ) u (n ) (5) 

From (5) , standard LMS update equation [1] is given by 

ˆ w (n + 1) = ˆ w (n ) − μ1 

2 

(
∂ J(n ) 

∂ ˆ w 

)
(6) 

where μ1 represents the step size parameter for standard LMS. 

In Eq. (6) , the first order gradient is used to update LMS 

weights. In case of the fractional LMS, in addition to first order gra- 

dient, fractional order gradient is also used. The recursive weight 

update relation for the fractional LMS algorithm is written as: 

ˆ w (n + 1) = ˆ w (n ) − μ1 

2 

(
∂ J(n ) 

∂ ˆ w 

)
+ μ f 

(
∂ f 

∂ ˆ w 

f 
J(n ) 

)
(7) 

where μf is the step size for the fraction order derivative ∂ f . 
Following the Caputo and Riemann-Liouville definition [37] , the 

fractional derivative of a function g(t) = t n is defined as: 

D 

f g(t) = 

�(n + 1) 

�( n − f + 1) 
t n − f (8) 

where D 

f is fractional derivative operator of order f and � is a 

gamma function, defined as: 

�(n ) = (n − 1)! (9) 

By using the above definitions for fractional order derivatives, the 

fractional order derivative in (7) becomes: 

∂ f 

∂ ˆ w 

f 
J(n ) = −2(e (n ) u (n )) 

(
∂ f 

∂ ˆ w 

f 
ˆ w (n ) 

)
(10) 

By using (8), (10) becomes: 

∂ f 

∂ ˆ w 

f 
J(n ) = −2(e (n ) u (n )) 

(
�(2) 

�(2 − f ) 
ˆ w 

1 − f 
(n ) 

)
(11) 

As �(2) = 1 , substituting (11) in (7) , we have: 

ˆ w (n + 1) = ˆ w (n ) + μ1 e (n ) u (n ) + 

μ f 

�(2 − f ) 
e (n ) u (n ) � | ̂  w | 1 − f (n ) 

(12) 

where the symbol � denotes an element by element multiplica- 

tion of vectors and the absolute value of vector ˆ w is used to avoid 

complex values. 

Eq. (12) is the weight update equation of the standard FLMS 

algorithm [3] . 
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