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a b s t r a c t 

A solution of the notoriously difficult problem of characterization and decomposition of multicompo- 

nent multivariate signals which partially overlap in the joint time-frequency domain is presented. This 

is achieved based on the eigenvectors of the signal autocorrelation matrix. The analysis shows that the 

multivariate signal components can be obtained as linear combinations of the eigenvectors that minimize 

the concentration measure in the time-frequency domain. A gradient-based iterative algorithm is used in 

the minimization process and for rigor, a particular emphasis is given to dealing with local minima as- 

sociated with the gradient descent approach. Simulation results over illustrative case studies validate the 

proposed algorithm in the decomposition of multicomponent multivariate signals which overlap in the 

time-frequency domain. 

Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved. 

1. Introduction 

Signals with time-varying spectral content are not readily char- 

acterized by the conventional Fourier analysis, and are commonly 

studied within the time-frequency (TF) analysis [1–8] . Research in 

this field has resulted in numerous representations and algorithms 

which have been almost invariably introduced for the processing 

of univariate signals, with most frequent characterization through 

amplitude and frequency-modulated oscillations [6,9] . 

Recently, the progress in sensing technology for multidimen- 

sional signals has been followed by a growing interest in time- 

frequency analysis of such multichannel (multivariate and/or mul- 

tidimensional) data. Namely, developments in sensor technology 

have made accessible multivariate data. Indeed, the newly intro- 

duced concept of modulated bivariate and trivariate data oscilla- 

tions (3D inertial body sensor, 3D anemometers [9] ) and the gen- 

eralization of this concept to an arbitrary number of channels have 

opened the way to exploit multichannel signal interdependence in 

the joint time-frequency analysis [10–12] . 

The concept of multivariate modulated oscillations has been 

proposed in [10] , under the restricting assumption that one com- 

mon oscillation fits best all individual channel oscillations. In other 

words, a joint instantaneous frequency (IF) aims to characterize 

multichannel data by capturing the combined frequency of all in- 

dividual channels. It is defined as a weighted average of the IFs 
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in all individual channels. The deviation of multivariate oscillations 

in each channel from the joint IF is characterized by the joint 

instantaneous bandwidth. With the aim to estimate the joint IF 

of multichannel signals, the synchrosqueezed transform, a highly 

concentrated time-frequency representation (TFR) belonging to the 

class of reassigned TF techniques, has been recently extended to 

the multivariate model [9] . Following the same aim of extracting 

the local oscillatory dynamics of a multivariate signal, the wavelet 

ridge algorithm has also been introduced within the multivariate 

framework [10] . Another very popular concept, empirical mode de- 

composition (EMD), has been studied for multivariate data, [18–

22] . However, successful EMD-based multicomponent signal de- 

composition is possible only for signals which exhibit nonoverlap- 

ping components in the TF plane. 

By virtue of high concentration and many other desirable prop- 

erties, the Wigner distribution is commonly exploited in numer- 

ous IF estimators developed within the TF signal analysis [6–8] . 

However, in the case of multicomponent signals, undesirable os- 

cillatory interferences known as cross-terms appear, sometimes 

masking the presence of desirable auto-terms. To this end, other 

representations have been developed, commonly aiming to pre- 

serve Wigner distribution concentration, while suppressing the 

cross-terms. One such algorithm is the S-method [6] which was 

also used as a basis for the multi-component signal decomposition 

algorithm, proposed in [1] . This particular type of decomposi- 

tion makes it possible to analyze and characterize signal compo- 

nents independently, allowing the IF estimation for each separate 

component [1–4] . 
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In this paper, multivariate Wigner distribution is studied as 

the basis of multicomponent multichannel signal decomposition. 

Namely, the strong interdependence of modulations of individual 

components within all the available data channels is exploited in 

the joint TF analysis, leading to a reduction of undesirable oscilla- 

tions present in cross-terms. The inverse multivariate Wigner dis- 

tribution matrix is decomposed into eigenvectors which contain 

signal components in the form of their linear combination. Further, 

a steepest-descent algorithm that enables a fast search for a linear 

combination of eigenvectors that produces the best possible com- 

ponents concentration is applied. Using the advantages of multi- 

channel interdependence, the proposed TF-based decomposition is 

shown to be successful in the case of multivariate signals which 

overlap in the TF plane, while preserving the integrity of each ex- 

tracted signal component. 

Notice that the conventional time-frequency decomposition 

techniques cannot separate crossing components of arbitrary 

forms, which may appear in various signal processing applications. 

One such scenario is in radar signal processing, where reflecting 

points may assume the same velocity along the line-of-sight. These 

components will cross in the time-frequency (time-Doppler) rep- 

resentation. The same effect appears when the target signature 

crosses with the clutter or stationary body reflecting component in 

the time-frequency representation of radar signal return. The pro- 

posed method assumes that multiple phase independent received 

signals are available. They can be obtained using polarization or 

multiple antenna systems [23] . Signals with low frequency varia- 

tions, when the amplitude changes are of the same order as the 

phase changes, can also be treated as signals with crossing compo- 

nents. Such are the ECG signals, for example. Multivariate forms of 

these signals are obtained using multiple sensors at different loca- 

tions. The presented approach can be applied to the decomposition 

of this class of signals as well. 

The paper is organized as follows. Basic theory regarding multi- 

variate TF signal analysis is presented in Section 2 . In Section 3 , the 

Wigner distribution of multivariate multicomponent signals is an- 

alyzed. In Section 4 , we present the basic theory leading to the de- 

composition of multivariate multi-component signals, whereas the 

decomposition algorithm is presented in Section 5 . The theory is 

verified through several numerical examples in Section 6 . 

2. Multivariate time-frequency analysis 

Consider a multivariate signal 

x (t) = 

⎡ 

⎢ ⎢ ⎣ 

a 1 (t) e jφ1 (t) 

a 2 (t) e jφ2 (t) 

. . . 

a N (t) e jφN (t) 

⎤ 

⎥ ⎥ ⎦ 

(1) 

obtained by measuring a complex-valued signal x ( t ) with N sen- 

sors, where by each sensor the amplitude and phase of the orig- 

inal signal are modified to give a i (t) exp ( jφi (t)) = αi x (t) exp ( jϕ i ) . 

If the measured signal is real-valued, its analytic extension 

x (t) = x R (t) + j H { x R (t) } 
is commonly used, with x R ( t ) being real-valued measured signal 

and H{ x R ( t )} its Hilbert transform. Analytic signal contains only 

nonnegative frequencies and the real-valued counterpart can be 

reconstructed. This form of signal is especially important in the 

instantaneous frequency interpretation within the time-frequency 

moments framework. 

Since all time-frequency representations may be considered as 

smoothed versions of the Wigner distribution, this distribution will 

be the starting point for a review of time-frequency based multi- 

variate signal analysis. The Wigner distribution of a multivariate 

signal x ( t ) is defined as 

W D (ω, t) = 

∫ ∞ 

−∞ 

x 

H (t − τ

2 

) x (t + 

τ

2 

) e − jωτ dτ, (2) 

where x H ( t ) is a Hermitian transpose of the vector x ( t ). 

The inverse Wigner distribution is then given by 

x 

H (t − τ

2 

) x (t + 

τ

2 

) = 

1 

2 π

∫ ∞ 

−∞ 

W D (ω , t) e jωτ dω . (3) 

The center of mass in the frequency axis of the Wigner distri- 

bution of a multivariate signal x ( t ), defined by (1) , is given by 

〈 ω(t) 〉 = 

∫ ∞ 

−∞ 

ω W D (ω , t) dω ∫ ∞ 

−∞ 

W D (ω, t) dω 

or, more explicitly 

〈 ω(t) 〉 = 

d 
j d τ

[
x 

H (t − τ
2 
) x (t + 

τ
2 
) 
]
| τ=0 

x 

H (t − τ
2 
) x (t + 

τ
2 
) | τ=0 

= 

1 

2 j 

[ x 

H (t) x 

′ (t) − x 

′ H (t) x (t)] 

x 

H (t) x (t) 
, 

where x ′ (t) = d x (t) /d t denotes derivative in time. 

The expression for instantaneous frequency of a multivariate 

signal follows straightforwardly from the previous relation in the 

form: 

〈 ω(t) 〉 = 

∑ N 
n =1 φ

′ 
n (t) a 2 n (t) ∑ N 

n =1 a 
2 
n (t) 

. (4) 

If a multivariate signal is obtained by sensing a mono- 

component signal x ( t ) as a i (t) exp ( jφi (t)) = αi x (t) exp ( jϕ i ) with 

x (t) = A (t ) exp ( jψ(t )) and | dA ( t )/ dt | � | d ψ( t )/ dt |, then 〈 ω(t) 〉 = 

d ψ(t) /d t, since d φi (t) /d t = d ψ(t) /d t . The condition for ampli- 

tude and phase variations of real-valued monocomponent sig- 

nals a i ( t )cos ( φi ( t )) can be defined by Bedrosian’s product theorem 

[13] . It states that the complex analytic signal a i (t) exp ( jφi (t)) = 

a i (t) cos (φi (t)) + jH { a i (t) cos (φi (t)) } is a valid representation of 

the real amplitude-phase signal a i ( t )cos ( φi ( t )) if the spectrum of 

a i ( t ) is nonzero only within the frequency range | ω| < B and the 

spectrum of cos ( φi ( t )) occupies nonoverlapping higher frequency 

range. A signal is monocomponent if the spectrum of a i ( t ) is of 

lowpass type. 

This analysis can be generalized to other time-frequency and 

time-scale signal representations. 

A deviation of the signal spectral content from the instanta- 

neous frequency is described by the local second order moments 

(instantaneous bandwidths). The expression for the instantaneous 

bandwidth is obtained from 

σ 2 
ω (t) = 

1 

2 πx 

H (t) x (t) 

∫ ∞ 

−∞ 

ω 

2 W D (t, ω ) dω − 〈 ω (t) 〉 2 

= 

− d 2 

dτ 2 

[
x 

H 
(
t − τ

2 

)
x 

(
t + 

τ
2 

)]∣∣
τ=0 

x 

H (t) x (t) 
− 〈 ω(t) 〉 2 . 

For the signal in (1) it has the following form: 

σ 2 
ω (t) = 

∑ N 
n =1 (a ′ n (t)) 2 − ∑ N 

n =1 a n (t) a ′′ n (t) 

2 

∑ N 
n =1 a 

2 
n (t) 

. 

In general, for the case of multicomponent signals, the compo- 

nents are localized over more than one instantaneous frequency. 

3. Multicomponent signals 

Consider a multicomponent signal 

x (t) = 

P ∑ 

p=1 

x p (t) 
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