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Highlights

• Propose a new mathematical framework for stochastic topology optimization.
• Study of the stability of structures submitted to several loads.
• Introduce a Variance-Expected compliance model for topology optimization.
• Deterministic formulation of the proposed model.
• Perform a numerical validation of the model considering 2D and 3D benchmark cases.

Abstract

In this paper, we develop a stochastic model for topology optimization. We find robust structures that minimize the compli-
ance for a given main load having a stochastic behavior. We propose a model that takes into account the expected value of the
compliance and its variance. We show that, similarly to the case of truss structures, these values can be computed with an equiv-
alent deterministic approach and the stochastic model can be transformed into a nonlinear programming problem, reducing the
complexity of this kind of problems. First, we obtain an explicit expression (at the continuous level) of the expected compliance
and its variance, then we consider a numerical discretization (by using a finite element method) of this expression and finally we
use an optimization algorithm. This approach allows to solve design problems which include point, surface or volume loads with
dependent or independent perturbations. We check the capacity of our formulation to generate structures that are robust to main
loads and their perturbations by considering several 2D and 3D numerical examples. To this end, we analyze the behavior of our
model by studying the impact on the optimized solutions of the expected-compliance and variance weight coefficients, the laws
used to describe the random loads, the variance of the perturbations and the dependence/independence of the perturbations. Then,
the results are compared with similar ones found in the literature for a different modeling approach.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider an open set Ω ⊂ Rd , where d is 2 for planar structures or 3 for three-dimensional bodies. The set
Ω represents a body that we assume is made of an isotropic, homogeneous and linear elastic material. The boundary
of Ω is denoted here by ∂Ω = Γu ∪ Γg with Γu ∩ Γg = ∅. In this setting, Γu corresponds to the part of the boundary
of Ω where the displacements of the body are not allowed. We assume that external forces f and g are applied to Ω
and Γg , respectively. A graphical representation of Ω is given in Fig. 1.

The displacements can be computed (see e.g. [1]) by solving the following system of partial differential equations:− div(K e(u)) = f, in Ω ,

u = 0, on Γu,

(K e(u)) · n̂ = g, on Γg,

(1)

where u : Ω → Rd is the vector of displacements, e(u) =
1
2 (∇u + ∇ut ) denotes the linearized strain tensor, K is the

fourth-order material elasticity tensor, div(·) is the divergence of a tensor field and n̂ is the outward unit normal vector
on the boundary of the domain. We suppose that K ∈ M, which is a set of admissible stiffness tensors, related to the
admissible materials we might use. Typically (see [2,3]), the set of admissible tensor M is a subset of

M̂ =


η(x)K 0

 
Ω

η(x) dx ≤ Vmax and η : Ω → [ηmin, ηmax]


, (2)

where Vmax is the maximum amount of material that is allocated; η(x) is the density of material at point x ∈ Ω ;
ηmin > 0, ηmax the maximum density we may use; and K 0 the fourth-order tensor of a linear elastic isotropic refer-
ence material. Additionally, other constraints should be considered in order to obtain physically realizable structures.
For example, we would like to avoid structures with intermediate density zones (i.e., η(x) ∈ ]ηmin, ηmax[), and mi-
crostructures with periodic variation density. For practical reasons, these constraints are not detailed in the continuous
definition of M but they will be taken into account in its numerical implementation (see Section 3).

In the following, we assume that f ∈ L2(Ω)d and g ∈ L2(Γg)
d although less regular external forces can also be

considered (see Remark 1)
Let us define H = {u ∈ [H1(Ω)]d

: u|Γu = 0}, where the space H1(Ω) is the well-known Sobolev space of
functions that are in L2(Ω) with the first derivatives (in the sense of distributions) in L2(Ω). For a given material and
its corresponding stiffness tensor K ∈ M, following [2,4] we define the bilinear functional AK : H × H → R by

AK (u, v) :=


Ω

e(u) : K e(v) dx, (3)

where e(u) : K e(v) denotes the tensor product given by

e(u) : K e(v) :=

d
i, j,k,l=1

Ki jklei j (u)ekl(v).

We recall that a weak solution of system (1) is a vector u ∈ H satisfying

AK (u, v) =


Ω

f · v dx +


Γg

g · v dx ∀v ∈ H. (4)

We note that, under suitable conditions on the data (according to Korn’s inequality and the Lax–Milgram Lemma
[5,6]), Problem (1) has a unique weak solution (see [7] for more details).

Remark 1. In this work it is possible to include functions less regular than f ∈ L2(Ω) or g ∈ L2(Γg) with a suitable
alternative weak formulation instead of (4). An example of force f ∉ L2(Ω) that is typically considered is a point wise
force f = f̄ δ(x − a), where f̄ ∈ Rd and a ∈ Ω̄ . In this case,


Ω f · v dx = f̄ v(a). Nevertheless, when computing an

approximated solution by using the Finite Element Method (see Section 3) f and g are usually approximated by func-
tions in L2(Ω)d and L2(Γg)

d , respectively, and (4) can be used again, becoming a linear system in finite dimension.



Download English Version:

https://daneshyari.com/en/article/497740

Download Persian Version:

https://daneshyari.com/article/497740

Daneshyari.com

https://daneshyari.com/en/article/497740
https://daneshyari.com/article/497740
https://daneshyari.com

