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a b s t r a c t 

Nonstationary signals, approximately sparse in the joint time-frequency domain, are considered. Recon- 

struction of such signals with sparsity constraint is analyzed in this paper. The short-time Fourier trans- 

form (STFT) and time-frequency representations that can be calculated using the STFT are considered. 

The formula for error caused by the nonreconstructed coefficients is derived and presented in the form 

of a theorem. The results are examined statistically on examples. 
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1. Introduction 

Nonstationary signals that cover most of the time and fre- 

quency domain may be well localized in the joint time-frequency 

domain. These signals are dense in both time and frequency, con- 

sidered separately. However, they could be located within much 

smaller regions in the joint domain using appropriate representa- 

tions [1–6] . The basic time-frequency representation is the short- 

time Fourier transform (STFT). It can be easily related to the 

Wigner distribution and its cross-terms reduced versions [7] . These 

representations will be considered in this paper. The signals are 

sparse in the time-frequency domain if the number of nonzero co- 

efficients in this domain is much smaller than the total number of 

coefficients. For example, a sum of few nonstationary signal com- 

ponents, being well localized in the STFT at each considered time 

instant, is a sparse signal in this domain. 

A signal that is sparse in a certain domain can be reconstructed 

with fewer samples than the Shannon–Nyquist sampling theorem 

requires. Compressive sensing is the field dealing with the prob- 

lem of signal recovery with reduced number of available samples 

[8–14] . Reducing the number of available samples in the analy- 
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sis manifests as a noise, whose properties in the discrete Fourier 

transform (DFT) domain are studied in [15] . These results will be 

used to define reconstruction properties in the STFT case. The in- 

fluence of noise in the two-dimensional DFT is examined in [16] . If 

a nonsparse signal is reconstructed with a reduced set of available 

samples then the noise due to the missing samples of nonrecon- 

structed coefficients will be considered as an additive input noise 

in the reconstructed signal. 

In the compressive sensing literature, only the general bounds 

for the reconstruction error for nonsparse signals (reconstructed 

with the sparsity assumption) are derived [10,17,18] . In this 

manuscript, we have presented an exact relation for the expected 

squared error in approximately sparse or nonsparse signals in the 

time-frequency domain, reconstructed from a reduced set of sig- 

nal samples, under the sparsity constraint. The error depends on 

the number of available samples and the assumed sparsity, that is 

crucial for any compressive sensing based reconstruction. The re- 

sults are given in the form of a theorem. Theory is illustrated and 

checked on statistical examples. 

The noise in the reconstructed STFT influences other time- 

frequency representations that can be calculated using this STFT. 

The S-method [6,7] is considered as an example of such signal rep- 

resentations. 

The paper is organized as follows. The theoretical background 

of compressive sensing and time-frequency signal analysis is pre- 

sented in Section 2 . The theorem and formula of nonsparsity in- 

fluence on the reconstructed signal is presented in Section 3 . The 

numerical results are given in Section 4 . The conclusions are pre- 

sented in Section 5 . 
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2. Theoretical background 

Let us consider a multicomponent signal 

x (n ) = 

C ∑ 

l=1 

x l (n ) , (1) 

where components x l ( n ) are nonstationary and the total number 

of components is C . Assume that the signal is sparse in the STFT 

domain. The STFT of the discrete-time signal is defined as 

S N (n, k ) = 

N/ 2 −1 ∑ 

m = −N/ 2 

x (n + m ) w (m ) e − j 2 πN mk , (2) 

at an instant n and a frequency k . The window function of length 

N is w ( m ). The windowed signal x (n, m ) = x (n + m ) w (m ) , which is 

K -sparse in the STFT domain, can be written in the form 

x ( n, m ) = 

K ∑ 

i =1 

A i ( n ) e j2 πmk i /N . (3) 

The signal and its STFT in a vector form are 

S N (n ) = W N H N x (n ) (4) 

H N x (n ) = W 

−1 
N S N (n ) , (5) 

where S N (n ) = [ S N (n, 0) , S N (n, 1) , . . . , S N (n, N − 1)] T is the STFT 

calculated at time instant n , x ( n ) is the original signal (column) 

vector within the window, W N is the DFT matrix of size N × N 

with coefficients W (m, k ) = e (− j2 πkm/N) and H N is a diagonal ma- 

trix with the window values at its diagonal. Analysis and recon- 

struction of the whole signal based on the STFT is straightforward 

with appropriate overlapping. It is presented in [1,2,6] . 

With the assumption that the signal is sparse in the STFT do- 

main, we can reconstruct it with a reduced number of samples, 

according to the compressive sensing theory [8,10,17,18,21] . 

The number of randomly positioned available samples for the 

reconstruction is N A � N . For a given n the available signal samples 

are at the positions 

n + m ∈ { n + m 1 , n + m 2 , . . . , n + m N A } . 
The number of unavailable/missing samples is N M 

= N − N A . The 

available samples (measurements) of the windowed signal are then 

defined as 

y n = [ x (n + m 1 ) w (m 1 ) , . . . , x (n + m N A ) w (m N A )] T . (6) 

Note that 

y n = AS N (n ) , 

where A is the measurement matrix. The matrix A is obtained by 

keeping the rows of the inverse DFT matrix corresponding to the 

available samples 

A = 

⎡ 

⎢ ⎢ ⎣ 

ψ 0 (m 1 ) ψ 1 (m 1 ) · · · ψ N−1 (m 1 ) 
ψ 0 (m 2 ) ψ 1 (m 2 ) · · · ψ N−1 (m 2 ) 
. . . 

. . . 
. . . 

. . . 
ψ 0 (m N A ) ψ 1 (m N A ) · · · ψ N−1 (m N A ) 

⎤ 

⎥ ⎥ ⎦ 

(7) 

where ψ k ( m ) are the inverse DFT matrix coefficients ψ k (m ) = 

1 
N exp ( j2 πmk/N) . 

The goal of compressive sensing is to reconstruct the original 

sparse signal (using its windowed overlapped versions) from the 

available samples. A general compressive sensing formulation is 

min ‖ 

S N (n ) ‖ 0 subject to y n = AS N (n ) . 

Here we will assume that the initial STFT is calculated using the 

available samples only 

S N0 (n, k ) = 

N A ∑ 

i =1 

x (n + m i ) w (m i ) e 
− j 2 πN m i k (8) 

S N0 (n ) = NA 

H y n , (9) 

where superscript H denotes the Hermitian transpose. 

The mean and the variance of this STFT, at a given instant n , 

calculated using the available signal samples only, are [15] 

E{ S N0 (n, k ) } = 

K ∑ 

i =1 

N A A i (n ) δ(k − k i ) (10) 

var { S N0 (n, k ) } = N A 

N M 

N − 1 

K ∑ 

i =1 

| A i (n ) | 2 ( 1 − δ(k − k i ) ) , (11) 

where δ(k ) = 1 only for k = 0 and δ(k ) = 0 , elsewhere. 

In general, time-varying signals are not strictly sparse in the 

STFT domain. Because of their nature, most of these signals are 

either approximately sparse or nonsparse. A signal is K -sparse in 

a transformation domain (in our case, in the STFT domain) if it 

has only K ( K � N ) nonzero coefficients in this domain at posi- 

tions k ∈ K = { k 1 , k 2 , . . . , k K } . Other coefficients, for k / ∈ K , are zero- 

valued. A signal is approximately sparse if the coefficients for k ∈ K 

are significantly larger than the coefficients at k / ∈ K . A signal is not 

K -sparse if the coefficients for k / ∈ K are of the same order as the 

coefficients at the positions k ∈ K . If we want to use the compres- 

sive sensing based theory for any of these signals the sparsity as- 

sumption has to be made. In this paper, we will analyze the error 

in these signals reconstructed under the K -sparsity assumption in 

the STFT domain. 

Signal reconstruction is done using estimation of the nonzero 

coefficient positions, based on (8) and calculating the unknown co- 

efficients A i ( n ) based on the known signal values x (n + m i ) . Vari- 

ous reconstruction algorithms can be used. For the numerical ver- 

ification of the results we will use an iterative form of the OMP 

algorithm. The reconstruction algorithm used in this paper is an 

iterative form of the OMP algorithm, introduced in [19,20] . Since 

the introduction of compressive sensing, many reconstruction al- 

gorithms have been developed. A review of reconstruction algo- 

rithms can be found in [21] . The main reason to use the presented 

algorithm is the fact that it uses the sparsity assumption in an ex- 

plicit way (producing K nonzero coefficients in the reconstructed 

signal). Also, its computational complexity is low. Other algorithms 

that also exploit the sparsity assumption in an explicit way can be 

used as well. 

In the first step, the position of the maximal STFT coefficient is 

found as 

k 1 = arg max { S N0 (n ) } . 
Matrix A 1 is formed from matrix A by omitting all columns except 

the column corresponding to k 1 . The first STFT estimate is 

S R (n ) = (A 

H 
1 A 1 ) 

−1 A 

H 
1 y n . 

The signal is reconstructed and subtracted from the original signal 

at the positions of available samples. The STFT estimate is calcu- 

lated again with this new signal and its maximum position k 2 is 

found. A new set K = { k 1 , k 2 } is formed with corresponding ma- 

trix A 2 . The new estimate S R ( n ) is calculated and the signal is re- 

constructed. The procedure is repeated K (assumed sparsity) times, 

with the final reconstruction 

S R (n ) = (A 

H 
K A K ) 

−1 A 

H 
K y n . 
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