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a b s t r a c t 

In this paper, we propose a nonconvex and nonsmooth total generalized variation (TGV) model for image 

restoration, which can provide an even sparser representation of the variation of the image function than 

the traditional TGV model that uses convex l 1 norm to measure the variation. New model combines the 

advantages of nonconvex regularization and TGV regularization, and can preserve image edges well and 

simultaneously alleviate the staircase effects often arising in the total variation based models. Two dif- 

ferent iteratively reweighed algorithms are introduced to numerically solve the proposed nonconvex and 

nonsmooth TGV model. Numerical results show that the proposed model is effective in edge-preserving 

and staircase-reduction in image restoration. In addition, compared with several state-of-the-art varia- 

tional models, the proposed model has the best performance in terms of PSNR and MSSIM values. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Image restoration and reconstruction is an important task in 

image processing and computer version, which has been applied in 

various areas such as medical imaging, pattern recognition, video 

coding and so on. So far, lots of techniques have been developed 

for image restoration and reconstruction such as spatial filtering 

[1,2] , transform domain filtering [3,4] , partial differential equa- 

tion (PDE) modeling [5,6] , and variational methods [7] . It should 

be pointed out that with the development of computational soft- 

ware and hardware technology, machine learning based methods 

[8–11] have received extensive attention in recent years, such as 

deep learning [8,11] , linear regression [9] , Bayesian learning [10,11] , 

and son on. 

In this paper, we focus on the image restoration from a noisy 

version by using variational method, where the noisy image is ob- 

tained by adding the white noise with zero-mean to the clean data, 

modeled as 

f = u + n (1.1) 

where u : � → R represents the true image, n is additive white 

noise, and f is the corresponding noisy version. It is well known 
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that solving the true image u from the linear system (1.1) is ill- 

posed [12,13] . To tackle this problem, one of the common meth- 

ods is regularization technique that minimizes cost functional to 

obtain the stable and accurate solutions [14–16] . Specifically, reg- 

ularization technique implements image restoration by solving the 

following variational problem, 

min 

u ∈ U 
{ E(u ) = λD (u, f ) + R (u ) } (1.2) 

where the first term D ( u, f ) is fidelity term that penalizes the 

restoration u to be very far away form the original observation f , 

the second term R ( u ) is a regularization term which represents the 

prior information about the object to be restored, such as continu- 

ity, smoothness or bounded variation, and λ is a tuning parameter 

that controls the balance between the fidelity term and the regu- 

larization term. 

How to choose an effective regularization term R ( u ) is the key 

problem in variational image restoration. The earliest regulariza- 

tion term is a quadric functional of the L 2 norm, ‖ Lu ‖ 2 
2 
, pro- 

posed by Phillips [17] and Tikhonov [18] in 1960s, often called 

Tikhonov regularization, where L is identity operator or differen- 

tial operator. Tikhonov regularization has excellent performance 

in noise-removing. However, it often overly smoothes the image 

edges which are important features in image recognition [19,20] . 

Later on, total variation (TV) regularization was proposed by Rudin 

et al. [19] in 1992 to conquer this problem. TV regularization al- 

lows the solution with discontinuities along curves, so edges and 
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contours can be preserved in the restoration. However, it often 

yields the undesired staircase effects in the smooth regions of 

the restoration, since it tends to transform the smooth regions of 

the solution into piecewise constant regions during the functional 

minimizing [21,22] . To overcome this drawback, many improved 

TV based regularization methods are proposed, such as high-order 

T V [23–26] , hybrid T V [27] , non-local T V [28,29] , overlapping T V 

[30,31] , anisotropic TV [32–34] , fractional order TV [35] , and so 

on. In this paper, we focus on the total generalized variation (TGV) 

[23,26] regularization that is a generalization of TV. TGV regular- 

ization can reconstruct image features up to an arbitrary order dif- 

ferentiation, such as piecewise constant, piecewise affine, piece- 

wise quadratic and so on, so it has the superior performance in 

image reconstruction than TV based regularization models which 

only can reconstruct piecewise constant regions. In other word, 

TGV regularization model can reduce the staircase effect that of- 

ten arises in TV based models. The above regularization terms all 

are convex, which ensures the existence and uniqueness of the so- 

lution. In addition, they can be efficiently solved by many convex 

optimization algorithms. 

In the last decades, signal sparsity-prior has received schol- 

ars’ constant attention, which simulates the human visual system. 

It is based on the observation that signals (also images) usually 

have a sparse representation in some transformed domain (such 

as Fourier transform, cosine transform), or some dictionaries (such 

as wavelet dictionary, framelet dictionary, self-adaptive dictionary) 

[36,37] . It is well known that nonconvex norms are more suitable 

to measure the sparsity than the corresponding convex ones, since 

they are much closer to the l 0 norm that is exactly the measure 

of sparsity [38–40] . Since the seminal work of Geman and Geman 

in [41] , various nonconvex regularization models have been pro- 

posed, such as [42–44] . Although the existence and the uniqueness 

of the solution for nonconvex regularization models still are open 

questions, a variety of applications (e.g., [44–47] ) have shown that 

nonconvex regularization models can recover the images of high 

quality with sharp and neat edges. The authors in [42,47] provided 

a theoretical explanation for this phenomenon. The nonconvex reg- 

ularization has the advantage in edge-preserving, but it leads to 

very serious staircase effects, even more severe than TV based 

models. 

In this paper, combining the advantages of TGV regularization 

and nonconvex regularization, and avoiding their main drawbacks, 

we propose a nonconvex and nonsmooth TGV (NNTGV) model for 

image restoration. New model can preserve image edges well and 

simultaneously alleviate the staircase effects. In addition, based on 

the majorization-minimization (MM) scheme [48] , two iteratively 

reweighted algorithms are introduced to numerically solve the pro- 

posed model: iteratively reweighted least squares (IRLS) algorithm 

[49–51] and iteratively reweighted l 1 (IRL1) algorithm [52,53] , re- 

spectively. The main contributions of this paper are summarized as 

follows: (1) A nonconvex and nonsmooth TGV model is proposed 

for image restoration. (2) Two iteratively reweighted algorithms are 

introduced to solve the proposed nonconvex minimization prob- 

lem. (3) We conduct extensive experiments to verify the proposed 

model in comparison with several state-of-the-art variational mod- 

els. 

The rest of the paper is organized as follows. In Section 2 , 

we give a brief review of TGV, nonconvex and nonsmooth TV, 

and iteratively reweighed algorithm, which are very relevant to 

our present study. In Section 3 , we present the proposed NNTGV 

model, and derive two efficient iteratively reweighted algorithms 

to solve it. In Section 4 , we show some numerical experiments to 

demonstrate the effectiveness of the proposed model. In addition, 

we compare it with several state-of-the-art variational models to 

show the superior performance in staircase-reduction and edge- 

preserving. The paper is summarized in Section 5 . 

2. Background knowledge 

2.1. TGV model 

TGV is a generalization of TV, which is defined on the dual for- 

mulation incorporating the space of symmetric k -tensors that are 

defined as 

Sym 

k (R 

d ) 

= 

{
ξ : R 

d × · · · × R 

d → R : ξ is k -linear and symmetric 
}

Let � ⊂ R 

2 be image domain and u : � → R be a image func- 

tion. Then, the TGV of order k ≥ 1 with positive weights α = 

(α0 , α1 , . . . , αk −1 ) is defined as 

TGV 

k 
α(u ) = sup 

{ 

∫ 
�

u di v k v dx 
∣∣v ∈ C k c ( Sy m 

k (�, R 

2 )) , 

|| di v l v | | ∞ 

� αl , l = 0 , . . . , k − 1 

} 

where C k c ( Sym 

k (�, R 

2 )) is the space of compactly supported sym- 

metric k -tensor fields, ‖ · ‖ ∞ 

is the L ∞ norm, and div k is the gener- 

alization of the divergence operator of k order to the tensor field. 

It is obviously that TGV is a generalization of TV. When k = 1 , 

α = (1) and Sym 

1 (R 

2 ) = R 

2 , then the definition of TGV is actu- 

ally the dual formulation of TV, i.e., TGV 

1 
1 (u ) = TV (u ) . We note that 

the TGV 

k 
α of all polynomials with degree less than or equivalent 

to k − 1 is zero. So minimizing TGV 

k 
α(u ) will lead to the piece- 

wise polynomial solutions. The second order TGV is often applied 

in variational image restoration, which is defined as 

TGV 

2 
α(u ) = sup 

{ 

∫ 
�

u di v 2 v dx 
∣∣v ∈ C 2 c ( Sy m 

2 (�, R 

2 )) , 

|| v || ∞ 

� α0 , || div v | | ∞ 

� α1 

} 

(2.1) 

Minimizing TGV 

2 
α(u ) with respect to u can reconstruct the 

piecewise constant and piecewise linear functions, so staircase ef- 

fects can be alleviated. But, the TGV 

2 
α(u ) formulated as in (2.1) is 

difficult to solved in the practice. In this study, we use another 

formulation of the second order TGV in terms of l 1 minimization. 

Firstly, for notational convenience, we define three function spaces 

U, W , and S as 

U 

def = C 2 c ( �, R ) , W 

def = C 2 c 

(
�, R 

2 
)
, S 

def = C 2 c 

(
�, R 

4 
)

Let u ∈ U , w = (w 

1 , w 

2 ) T ∈ W, and s = (s 1 , s 2 , s 3 , s 4 ) T ∈ S, in which 

w 

i ∈ U(i = 1 , 2) , and s j ∈ U( j = 1 , . . . , 4) . Here the 2-tensor s is 

converted into a vector column by column for computational con- 

venience. The gradient operators on the space U and W , and the 

divergence operators on the space W and S are defined as 

∇ u : U → W, ∇ u u = (∂ + x u, ∂ + y u ) T 

∇ w 

: W → S, ∇ w 

w = (∂ + x w 

1 , 
1 

2 

(∂ + y w 

1 + ∂ + x w 

2 ) , 

1 

2 

(∂ + y w 

1 + ∂ + x w 

2 ) , ∂ + y w 

2 ) T 

div w 

: W → U, div w 

w = ∂ −x w 

1 + ∂ −y w 

2 

div s : S → W, div s s = 

(
∂ −x s 

1 + ∂ −y s 
2 , ∂ −x s 

3 + ∂ −y s 
4 
)T 

where ∂ + x , ∂ 
+ 
y , ∂ 

−
x and ∂ −y are the first order forward and backward 

discrete derivation operators in the x -direction and y -direction, re- 

spectively, which are defined as 

( ∂ + x u ) i, j = 

{
u i, j+1 − u i, j , if j < N 

0 , if j = N 
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