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a b s t r a c t 

In typical Compressed Sensing operational contexts, the measurement vector y is often partially cor- 

rupted. The estimation of a sparse vector acting on the entire support set exhibits very poor estima- 

tion performance. It is crucial to estimate set I uc containing the indexes of the uncorrupted measures. 

As I uc and its cardinality |I uc | < N are unknown, each sample of vector y follows an i.i.d. Bernoulli prior 

of probability P uc , leading to a Binomial-distributed cardinality. In this context, we derive and analyze 

the performance lower bound on the Bayesian Mean Square Error (BMSE) on a |S| -sparse vector where 

each random entry is the product of a continuous variable and a Bernoulli variable of probability P and 

|S|||I uc | follows a hierarchical Binomial distribution on set { 1 , . . . , |I uc | − 1 } . The derived lower bounds do 

not belong to the family of “oracle” or “genie-aided” bounds since our a priori knowledge on support I uc 

and its cardinality is limited to probability P uc . In this context, very compact and simple expressions of 

the Expected Cramér–Rao Bound (ECRB) are proposed. Finally, the proposed lower bounds are compared 

to standard estimation strategies robust to an impulsive (sparse) noise. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In the Compressed Sensing (CS) framework [1–3] , it is assumed 

that the signal of interest can be linearly decomposed into few ba- 

sis vectors. By exploiting this property, CS allows for using sam- 

pling rates lower [4] than the Shannon’s sampling rate [5] . As a 

result, CS methods have found a plethora of applications in nu- 

merous areas, e.g. array processing [6,7] , wireless communications 

[8,9] , video processing [10] or in MIMO radar [11–13] . 

A fundamental problem is to derive the estimation performance 

of sparse signal [14] . To reach this goal, the lower bounds on the 

mean-square error (MSE) are useful as a benchmark against any 

estimators can be compared [15,16] . They have been investigated 

for deterministic sparse vector estimation in [17–20] and for the 

Bayesian linear model in [21–24] . 

In realistic contexts, the estimation accuracy in terms of the 

Bayesian MSE (BMSE), of standard sparse-based estimator collapses 

in presence of a corrupted measurements [25–29] . In this work, 
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our aim is to study the estimation performance limit in presence 

of corrupted measurements. CS with corrupted measurements [30–

32] plays a central role in numerous applications, such as the 

restoration of signals from impulse noise, strong narrowband inter- 

ference, bursts of high noise ( e .g., hardware power-supply spikes), 

measurements dropped during transmission, malfunctioning sen- 

sors in network, e tc. In practice, the indexes, i .e., the support I uc , 

constituted by the uncorrupted measurements and its cardinality, 

denoted by |I uc | , are unknown. So, to take into account this uncer- 

tain knowledge, the support I uc is modelized as a collection of i.i.d. 

Bernoulli-distributed random variables with a probability 1 − P uc to 

be corrupted. Thus, in our framework, the proposed lower bounds 

do not belong to the family of “oracle” or “genie-aided” bounds 

since only the knowledge of probability P uc is assumed to be a 

priori known. As a consequence, the unknown cardinality |I uc | fol- 

lows a Binomial prior in set { 1 , . . . , N − 1 } . So, our goal is to derive 

a lower bound on the BMSE for the estimation of a |S| -sparse am- 

plitude vector for ( i ) a Gaussian measurement matrix and ( ii ) for 

random support, S, and cardinality, assuming that each entry of 

the vector of interest is modeled as the product of a continuous 

random variable and a Bernoulli-distributed random variable indi- 

cating that the current entry is non-zero with probability P . To en- 

sure the model identifiability constraint, we must have |S| < |I uc | , 
meaning that |S|||I uc | follows a hierarchical Binomial distribution 

confined in the set { 1 , . . . , |I uc | − 1 } . This work proposes several 

new contributions regarding the state of art on the lower bounds 
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for the estimation of sparse signal. Contrary to [17,18,20] , the pro- 

posed lower bounds do not assume the knowledge of the support 

and its cardinality. Regarding the references [21–23] , the proposed 

lower bounds remain true for any continuous prior on the non- 

zero entries of interest. Our framework differs from [24] since the 

derived results are obtained in the non-asymptotic scenario. We 

can note that to the best of our knowledge the derivation of an 

Bayesian lower bound with corrupted measurements has not been 

proposed in the literature. Finally, the proposed lower bounds are 

illustrated in the context of the standard estimation strategies ro- 

bust to an impulsive (sparse) noise. 

This work is composed by two main parts. The first one 

presents the Expected Cramér–Rao Bound (ECRB) based on a com- 

plete measurement vector scenario meaning that P uc = 1 . This sec- 

tion has been partially presented during the IEEE SSP’16 conference 

[33] . The second part presents the major contribution of this work, 

Specifically, the more challenging corrupted measurement vector 

scenario is tackled. 

Notations : The symbols ( ·) T , ( ·) † , Tr( ·) and ( ·)! denote the trans- 

pose, the pseudo-inverse, the trace operator and the factorial, re- 

spectively. Furthermore, N (μ, σ 2 ) stands for the real Gaussian 

probability density function (pdf) with mean μ and variance σ 2 . 

Bernou( P ) stands for the Bernoulli distribution of probability of 

success P . Binomial( N, P ) stands for the Binomial distribution in 

{ 0 , . . . , N} with a success probability P [34] . The binomial coeffi- 

cient is 
(

a 
b 

)
= 

a ! 
b!(a −b)! 

. | ·| is the cardinality of the set given as an 

argument. 1 X (x ) is the indicator function with respect to the set 

X , i .e., 1 X (x ) = 1 if x ∈ X and 0 otherwise. O ( ·) is the Big- O no- 

tation [35] . E X ( r esp. E X| Y ) denotes the mathematical ( r esp. con- 

ditional) expectation. log is the logarithm function and ∂ is the 

partial derivative symbol. A function in C 1 is continuously differ- 

entiable. p ( ·) denotes a probability density function (pdf) and Pr( ·) 
denotes the probability mass function (pmf). 

2. CS model and recovery requirements 

Let y be a N × 1 noisy measurement vector in the (real) Com- 

pressed Sensing (CS) model [1–3] : 

y = �s + n , (1) 

where n is a (zero-mean) white Gaussian noise vector with compo- 

nent variance σ 2 and � is the N × K sensing/measurement matrix 

with N < K . The vector s is given by s = �θ, where � is a K × K 

orthonormal matrix and θ is a K × 1 amplitude vector. With this 

definition (1) can be recast as 

y = H θ + n (2) 

where the overcomplete N × K matrix H = �� is commonly re- 

ferred to as the dictionary. The amplitude vector θ k are assumed 

to be random with an unspecified pdf. Let P be a K × K diagonal 

matrix composed by K random binary entries. This matrix mod- 

elizes the mechanism to randomly “sparsify” the dense random 

vector θ′ on the support set S . This set is composed by the col- 

lection of indices of the non-zero θ k . The cardinality of the sup- 

port is denoted by |S| . So, the K × 1 vector θ = P θ
′ 

is |S| -sparse, 

with |S| < N < K. Under this assumption and using the property 

P 2 = P , we can rewrite the first summand in (2) as 

H θ = H P θ
′ = H P 2 θ

′ = [ H P ] S [ P θ
′ 
] S = H S θS 

with H S = ��S and the N × |S| matrix �S is built up with the |S| 
columns of � having their indices in S and the |S| × 1 vector θS is 

composed by the non-zero entries in θ′ randomly selected thanks 

to matrix P . Fig. 1 illustrates the considered model. 

2.1. Statistical priors 

2.1.1. Universal design strategy of matrix H 

Determining whether the dictionary H = �� satisfies the con- 

centration inequality is combinatorially complex but the so-called 

universal design strategy has been introduced for instance in [2,3] . 

Assume that matrix � is an orthonormal basis and the measure- 

ment matrix � is drawn from an independent and identically 

distributed Gaussian entries of zero mean and variance 1/ N . For 

0 < ε < 1, the concentration probability for dictionary H is 

Pr 
(∣∣|| H θ|| 2 − || θ|| 2 ∣∣ ≥ ε|| θ|| 2 ) = Pr 

(∣∣|| �s || 2 − || s || 2 ∣∣ ≥ ε|| s || 2 )
since || s || 2 = || θ|| 2 thanks to �T � = I . So, according to the above 

equality, we can see that the concentration probability for H with 

an orthonormal � is characterized by the concentration proba- 

bility for the measurement matrix �. According to [36–40] , it is 

well known that Gaussian matrices satisfy with high probability 

the concentration inequality: 

Pr 
(∣∣|| �s || 2 − || s || 2 ∣∣ ≥ ε|| s || 2 ) ≤ e −cNε2 

where c is a given positive constant. Note that this statistical guar- 

anty ensures that practical estimators can successfully recover a 

|S| -sparse amplitude vector from noisy measurements with high 

probability for a number of measurements N = O (|S| log (K/ |S| ) . 
Note that the number of measurements is smaller than the clas- 

sical sampling theory [5] . 

2.1.2. Design of the selection matrix P 

Definition 2.1 (Guaranty on the non-singularity of the Fisher in- 

formation) . Define the deterministic set I ⊂ { 1 , . . . , K} of cardinal- 

ity |I| = N − 1 < K. Given |I| available measurements, the Fisher 

information associated to model of (2) is said to be non-singular 

if the degree of freedom satisfies |I| − |S| ≥ 0 . In the estimation 

point of view, considering more parameters of interest than the 

number available measurements leads to a rank deficient Fisher In- 

formation Matrix (FIM). 

In the context of Definition 2.1 , it cannot exist an estimator 

with finite variance [24,41–44] . 

Random cardinalities with the FIM non-singularity guaranty. For 

1 ≤ k ≤ K , we have two possible cases: {
θk ∈I � = 0 with probability P, 

θk ∈I = 0 with probability 1 − P. 

The above formulation can be compactly expressed according 

to 

[ P ] k,k = 1 S (k )1 I (k ) (3) 

where 1 I (k ) enforces the FIM non-singularity guaranty and 

1 S (k ) ∼ Bernou (P ) 

for a probability of success given by P = L/ (N − 1) and L = E |S| . 
By definition the cardinality of S conditionally to a given set I

is 

|S||I = Tr P = 

K ∑ 

k =1 

1 S (k )1 I (k ) = 

∑ 

k ∈I 
1 S (k ) 

with |I| = N − 1 . So, |S||I is the sum of |I| i.i.d. Bernoulli- 

distributed variables. As a consequence, 

|S| ∼ Binomial (|I| , P ) . 
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