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a b s t r a c t 

In this paper, we consider robust adaptive beamformer design for multiple-input multiple-output (MIMO) 

radar systems. The desired transmit-receive steering vector is estimated through maximizing the output 

power subject to constraints upon correlation coefficient and steering vector norm. The original noncon- 

vex problem is reformulated as two reduced dimension semi-definite programming (SDP) problems. An 

iterative procedure is devised to tackle the two SDP problems, whose convergence is analytically proven. 

Based on the estimated desired signal, we are then able to obtain the interference covariance matrix 

via the matrix rank-constrained minimization method. Compared to other robust adaptive beamforming 

methods for MIMO radar, the proposed approach has the advantages of high efficiency and accuracy. 

Simulation results are presented to confirm the effectiveness and robustness of the proposed approach. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Multiple-input multiple-output (MIMO) radar has received sig- 

nificant attention due to its various advantages over conventional 

radar systems, such as enhanced detection performance, improved 

parameter identifiability and angular resolution, providing more 

degrees of freedom (DOFs), and better spatial coverage [1] . MIMO 

radar is usually divided into statistical (or widely separated) MIMO 

radar [2] and colocated (or coherent) MIMO radar [3] . Statistical 

MIMO radar that is comprised of widely separated transmit and 

receive antennas, can achieve spatial diversity gain and enhance 

detection performance. On the other hand, colocated MIMO radar 

with waveform diversity can enhance parameter identifiability and 

increase the flexibility of transmit beampattern design, thereby im- 

proving spatial resolution via a great increase in DOFs of the sys- 

tem [4] . 

In practice, the adaptive beamforming algorithm is usually used 

to extract the desired signal and suppress simultaneously the inter- 

ference as well as noise at the array output [5] . However, the con- 
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ventional beamforming method often suffers severe performance 

degradation due to certain factors such as small number of train- 

ing snapshots, corruption of training data by the desired signal in 

many practical applications, and the mismatch between the as- 

sumed and actual knowledge [6] . Thus, robust design techniques 

have been an active research topic. During the past decade, var- 

ious robust adaptive beamformers have been proposed based on 

different principles to achieve high resolution in the framework 

of phased array receivers [7–9] . The diagonal loading technique is 

prevalent in enhancing the robustness of the beamformer. How- 

ever, the limitation of the diagonal loading method is that the 

diagonal loading factor must be generally determined empirically 

[10] . The worst-case optimization-based technique developed in 

[11] delimits the uncertainty set by upper bounding the norm of 

the mismatch vector. In [12] , a robust method is proposed by ex- 

ploiting the specific structure of the matrix to enhance the robust- 

ness of adaptive arrays. In order to combat the effect of the de- 

sired signal in the sample covariance matrix, some robust meth- 

ods based on covariance matrix estimation have been developed 

[13–17] . In the shrinkage method, an enhanced covariance matrix 

is obtained to improve the robustness against the signal mismatch 

problem. But the improvement in performance is limited [13,14] . A 

spatial power spectrum sampling algorithm has been proposed to 

form an interference-plus-noise covariance matrix for further im- 
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provement in performance [15–17] , while these techniques usually 

involve high computational complexity. The associated robust op- 

timization techniques have also been considered for use in MIMO 

radar [18–20] . In [18] , the worst-case optimization algorithm was 

used in MIMO radar. Moreover, in [19] a robust design has been 

proposed to mitigate signal mismatch with a certain selected prob- 

ability distribution, which is a variant of the worst-case-based ap- 

proach. An adaptive beamformer with magnitude response con- 

straints is developed for MIMO radar [20] , which employs the con- 

vex optimization method to obtain an exact robust solution. 

In this paper, we consider a novel robust adaptive beamforming 

problem using full DOFs in the context of MIMO radar. The desired 

transmit-receive steering vector is estimated through maximizing 

the output power subject to spatial correlation coefficient and 

norm constraints. Then we devise an iteration procedure to tackle 

a relaxed version of the original nonconvex problem. Each iteration 

of the algorithm is handled via solving two low-dimensional con- 

vex optimisation problems [21,22] . Then with the analyzed desired 

signal steering vector and the shrinkage estimator preprocessing, 

the interference covariance matrix can be estimated via the ma- 

trix rank-constrained minimization method. Compared with other 

high-performance algorithms for MIMO radar, the results indicate 

the effectiveness and robustness of the proposed algorithm. 

The remainder of this paper is organized as follows. The MIMO 

signal model is described in Section 2 . In Section 3 , a novel steer- 

ing vector method is proposed. Then, a new method to recon- 

struct the interference-plus-noise covariance matrix is introduced. 

In Section 4 , we evaluate the performance via numerical simula- 

tions. Finally, conclusions are drawn in Section 5 . 

2. MIMO Signal model 

Consider a MIMO narrowband radar system composed of M t 

transmit antennas and M r receive antennas. We assume that all 

transmit and receive antennas are isotropic. Each transmit element 

emits a different waveform and the baseband signal at the receiver 

can be written as 

x ( t ) = α0 a r ( φ0 ) a t 
T ( θ0 ) s ( t ) + 

J ∑ 

j=1 

α j a r 
(
φ j 

)
a t 

T 
(
θ j 

)
s ( t ) + n ( t ) , 

(1) 

where t is the time index, and ( · ) T denotes the transpose opera- 

tion. Parameters α0 and αj denote respectively the complex coef- 

ficient of the desired signal, and the complex coefficient of the j th 

interference. We assume that the desired signal, interference, and 

noise are statistically mutually independent, and the interference 

is neither close to nor in the mainlobe beam region of the array. 

The directions of departure (DODs) and directions of arrival (DOAs) 

of the desired signal and interferences with respect to the transmit 

and receive array normals are denoted respectively as 
{
θ j , ϕ j 

}J 

j=0 
. 

We also assume that the waveforms s ( t ) = 

[
s 1 ( t ) , . . . , s M t 

( t ) 
]

are 

mutually orthogonal with unit energy such that 
∫ 

T N 
s ( t ) s H ( t ) dt = I, 

where I and T N represent the identity matrix and the radar pulse 

width; n ( t ) is the additive white Gaussian noise vector; and a t ( · ) 

and a r ( · ) denote the corresponding M t × 1 and M r × 1 steering vec- 

tors, which have the following general forms 

a t (θ ) = 

[
1 e j2 πd t sinθ/λ . . . e j2 π( M t −1 ) d t sinθ/λ

]T 
, 

a r (φ) = 

[
1 e j2 πd r sinθ/λ . . . e j2 π( M r −1 ) d r sinθ/λ

]T 
, (2) 

where λ is the carrier wavelength. The interelement spacing in 

the transmit and receive arrays are denoted by d t and d r , respec- 

tively. By matched filtering the received data to the m t th transmit- 

ted waveform at the receiver (i.e., y m t ( t ) = 

∫ 
T N 

x ( t ) s m t 
∗( t ) dt, m t = 

1 , . . . , M t , where () ∗ denotes the conjugate operator), then the out- 

put of the matched filters of the MIMO radar can then be ex- 

pressed as 

y = α0 a t ( θ0 ) � a r ( φ0 ) + 

J ∑ 

j=1 

α j a t 
(
θ j 

)
� a r 

(
φ j 

)
+ z 

= y s + y j + z , (3) 

where y s , y j , z are the desired signal, interference, and noise vector 

components, respectively; and � denotes the Kronecker product; 

a t ( θ0 ) �a r ( φ0 ) denotes the M t M r × 1 transmit-receive steering vec- 

tor. Under the assumption that both the signal steering vector and 

the data matrix are known precisely, the transmit-receive beam- 

forming weight vector w can be obtained via maximizing the out- 

put signal-to-interference-plus-noise ratio (SINR) 

SINR = 

w 

H R s w 

w 

H R jn w 

= 

σ 2 
0 

∣∣w 

H a t ( θ0 ) � a r ( φ0 ) 
∣∣2 

w 

H R jn w 

, (4) 

where σ 2 
0 

denotes the desired signal power, and | · | is an abso- 

lute operator. R s = E 
[
y s y 

H 
s 

]
and R jn = E 

[ (
y j + z 

)(
y j + z 

)H 
] 

repre- 

sent the desired signal and the interference-plus-noise covariance 

matrices, respectively, where E{ · } is the statistical expectation op- 

erator. In practice, the interference-plus-noise covariance matrix is 

difficult to be obtained, thus, it is usually replaced by the sample 

covariance matrix ˆ R , which is calculated from the received signal 

vectors as 

ˆ R = 

1 

L 

L ∑ 

l=1 

y ( l ) y H ( l ) , (5) 

where y ( l ) denotes the sample data at the l th snapshot and L de- 

notes the number of snapshots. The transmit-receive beamforming 

weight vector is given by 

w = 

ˆ R 

−1 ( a t ( θ0 ) � a r ( φ0 ) ) 

( a t ( θ0 ) � a r ( φ0 ) ) 
H ˆ R 

−1 ( a t ( θ0 ) � a r ( φ0 ) ) 
. (6) 

Note that ˆ R contains the desired signal component. As stated 

in the last section, the calculated adaptive weight vector by using 
ˆ R will obtain worse performance as compared with the one using 

the covariance matrix without any contribution from the desired 

signal. Based on the Capon spatial power spectrum estimator [23] , 

the beamformer output power can be expressed as 

P ( θ0 ) = 

1 

( a t ( θ0 ) � a r ( φ0 ) ) 
H ˆ R 

−1 ( a t ( θ0 ) � a r ( φ0 ) ) 
. (7) 

3. Proposed method 

As stated previously, adaptive beamformers are sensitive to 

steering vector mismatch, especially when the desired signal is 

present in the training data, which may cause the self-null phe- 

nomenon of the direction of the desired signal and result in 

dramatic performance degradation. In addition, the reconstructed 

interference-plus-noise covariance matrix may not be easily ob- 

tained. In this section, we propose a different approach to obtain 

the beamforming weight vector. The main idea is first to estimate 

the desired signal steering vector and then remove the actual de- 

sired signal information from the sample covariance matrix. 

3.1. Steering vector estimation 

According to the description in [13] , shrinkage methods are 

suitable for high-dimensional covariance estimation with small 

number of samples. We use the shrinkage form as 

˜ R = ˆ αI + 

ˆ β ˆ R , (8) 
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