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a b s t r a c t 

Our objective is to efficiently design a robust projection matrix � for the Compressive Sensing (CS) sys- 

tems when applied to the signals that are not exactly sparse. The optimal projection matrix is obtained 

by mainly minimizing the average coherence of the equivalent dictionary. In order to drop the require- 

ment of the sparse representation error (SRE) for a set of training data as in [15,16], we introduce a novel 

penalty function independent of a particular SRE matrix. Without requiring of training data, we can effi- 

ciently design the robust projection matrix and apply it for most of CS systems, like a CS system for im- 

age processing with a conventional wavelet dictionary in which the SRE matrix is generally not available. 

Simulation results demonstrate the efficiency and effectiveness of the proposed approach compared with 

the state-of-the-art methods. In addition, we experimentally demonstrate with natural images that un- 

der similar compression rate, a CS system with a learned dictionary in high dimensions outperforms the 

one in low dimensions in terms of reconstruction accuracy. This together with the fact that our proposed 

method can efficiently work in high dimension suggests that a CS system can be potentially implemented 

beyond the small patches in sparsity-based image processing. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Since the beginning of this century, Compressive Sensing or 

Compressed Sensing (CS) has received a great deal of attention [1–

6] . Generally speaking, CS is a mathematical framework that ad- 

dresses accurate recovery of a signal vector x ∈ � 

N from a set of 

linear measurements 

y = �x ∈ � 

M (1) 

where M � N and �∈ � 

M × N is referred to as the projection or 

sensing matrix. CS has found many applications in the areas such 

as image processing, machine learning, pattern recognition, signal 

detection/classification etc. We refer the reader to [5,6] and the ref- 

erences therein to find the related topics mentioned above. 

Sparsity and coherence are two important concepts in CS the- 

ory. We say a signal x of interest approximately sparse (in some 

basis or dictionary) if we can approximately express it as a lin- 

ear combination of few columns (also called atoms) from a well- 

chosen dictionary: 

x = �θ + e (2) 

where � ∈ � 

N × L is the given or determined dictionary, θ ∈ � 

L is a 

sparse coefficient vector with few non-zero elements, and e ∈ � 

N 
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stands for the sparse representation error (SRE). In particular, the 

vector x is called (purely or exactly) K -sparse in � if ‖ θ‖ 0 = K and 

e = 0 and approximately K -sparse in � if ‖ θ‖ 0 = K and e has rel- 

atively small energy. Here, ‖ θ‖ 0 denotes the number of non-zero 

elements in θ and 0 represents a vector whose entries are equiv- 

alent to 0. Through this paper, we say θ is K -sparse if ‖ θ‖ 0 = K

regardless whether e = 0 . 

Substituting the sparse model (2) of x into (1) gives 

y = ��θ + �e � D θ + �e (3) 

where the matrix D = �� is referred to as the equivalent dic- 

tionary of the CS system and ε� �e denotes the projection noise 

caused by SRE. The goal of a CS system is to retrieve θ (and hence 

x ) from the measurements y . Due to the fact that M � L , solving 

y ≈ D θ for θ is an undetermined problem which has an infinite 

number of solutions. By utilizing the priori knowledge that θ is 

sparse, a CS system typically attempts to recover θ by solving the 

following problem: 

θ = arg min 

˜ θ
‖ ̃

 θ‖ 0 , s.t. ‖ y − D ̃

 θ‖ 2 ≤ ‖ ε‖ 2 (4) 

which can be solved by many efficient numerical algorithms in- 

cluding basis pursuit (BP), orthogonal matching pursuit (OMP), 

least absolute shrinkage and selection operator (LASSO) etc. All of 

the methods can be found in [5,7] and the references therein. 

To ensure exact recovery of θ through (4) , we need certain con- 

ditions on the equivalent dictionary D . One of such conditions is 
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related to the concept of mutual coherence . The mutual coherence 

of a matrix D ∈ � 

M × L is denoted by 

μ( D ) � max 
1 ≤i 	 = j≤L 

| ̄G (i, j) | (5) 

where Ḡ = D̄ 

T 
D̄ is called the Gram matrix of D̄ = D S sc with S sc a di- 

agonal scaling matrix such that each column of D̄ is of unit length. 

Here T represents the transpose operator. It is known that μ( D ) is 

lower bounded by the Welch bound μ( D ) = 

√ 

L −M 

M(L −1) 
, i.e., μ( D ) ∈ 

[ 

√ 

L −M 

M(L −1) 
, 1] . The mutual coherence μ( D ) measures the worst-case 

coherence between any two columns of D and is one of the funda- 

mental quantities associated with the CS theory. As shown in [5] , 

when there is no projection noise (i.e., ε = 0 ), any K -sparse signal 

θ can be exactly recovered by solving the linear system (4) as long 

as 

K < 

1 

2 

[ 
1 + 

1 

μ( D ) 

] 
(6) 

which indicates that a smaller μ( D ) ensures a CS system to recover 

the signal with a larger K . Thus, Barchiesi et al. and the following 

workers [8,9] proposed methods to design a dictionary with small 

mutual coherence. For a given dictionary �, the mutual coherence 

of the equivalent dictionary is actually determined or controlled by 

the projection matrix �. So it would be of great interest to design 

� such that μ( D ) is minimized. Another similar indicator used to 

evaluate the average performance of a CS system is named average 

mutual coherence μav . The definition of μav is given as follows: 

μa v ( D ) � 

∑ 

∀ (i, j) ∈ S a v | ̄G (i, j) | 
N a v 

where S a v � { (i, j) : μ̄ ≤ | ̄G (i, j) |} with 0 ≤ μ̄ < 1 as a prescribed 

parameter and N av is the number of components in the index set 

S av . 

There has been much effort [10–14] devoted to designing an op- 

timal � that outperforms the widely used random matrix in terms 

of signal recovery accuracy (SRA). However, all these methods are 

based on the assumption that the signal is exactly sparse under a 

given dictionary, which is not true for practical applications. It is 

experimentally observed that the sensing matrix designed by Elad 

and the following workers [10–14] based on mutual coherence re- 

sults in inferior performance for real images (which are generally 

approximately but not exactly sparse under a well-chosen dictio- 

nary). To address this issue, the recent work in [15,16] proposed 

novel methods to design a robust projection matrix when the SRE 

exists. 1 Through this paper, similar to what is used in [15,16] , a 

robust projection (or sensing) matrix means it is designed with 

consideration of possible SRE and hence the corresponding CS sys- 

tem yields superior performance when the SRE e in (2) is not nil. 

However, the approaches in [15,16] need the explicit value of the 

SRE on the training dataset, making them inefficient in several as- 

pects. First, many practical CS systems with predefined analytical 

dictionaries (e.g., the wavelet dictionary, and the modulated dis- 

crete prolate spheroidal sequences (DPSS) dictionary for sampled 

multiband signals [17] ) actually do not involve any training dataset 

and hence no SRE available. In order to design the robust projec- 

tion matrix for these CS systems using the framework presented 

in [15,16] , one has to first construct plenty of extra representa- 

tive dataset for the explicit SRE with the given dictionary, which 

limits the range of applications. Second, even for the CS system 

with a dictionary learned typically on a large-scale dataset, we 

need a lot of memories and computations to store and compute 

1 We note that the approaches considered in [15,16] share the same framework. 

The difference is that in [16] Hong et al. utilized an efficient iterative algorithm 

giving an approximate solution, while a closed form solution is derived in [15] . 

with the huge dataset as well its corresponding SRE for designing 

a robust sensing matrix. Moreover, if the CS system is applied to 

a dynamic dataset, e.g., video stream, it is practically impossible 

to store all the data and compute its corresponding SRE. There- 

fore, the requirement of the explicit value of SRE for the training 

dataset makes the methods in [15,16] limited and inefficient for all 

the cases discussed above. 

In this paper, to drop the requirement of the training dataset as 

well as its SRE, we propose a novel robust projection matrix frame- 

work only involving a predefined dictionary. With this new frame- 

work, we can efficiently design projection matrices for the CS sys- 

tems mentioned above. We stress that by efficient method for ro- 

bust projection matrix design (which is the title of this paper), we 

are not providing an efficient method for solving the problems in 

[15,16] ; instead we provide a new framework in which the training 

dataset and its corresponding SRE are not required any more. Ex- 

periments on synthetic data and real images demonstrate the pro- 

posed sensing matrix yields a comparable performance in terms of 

SRA compared with the ones obtained by Li and Hong et al. [15,16] . 

Before proceeding, we first briefly introduce some notation 

used throughout the paper. MATLAB notations are adopted in this 

paper. In this connection, for a vector, v ( k ) denotes the k th com- 

ponent of v . For a matrix, Q ( i, j ) means the ( i, j )th element of ma- 

trix Q , while Q ( k , : ) and Q (:, k ) indicate the k th row and column 

vector of Q , respectively. We use I and I L to denote an identity 

matrix with arbitrary and L × L dimension, respectively. The k th 

column of Q is also denoted by q k . trace( Q ) denotes the calcula- 

tion of the trace of Q . The Frobenius norm of a given matrix Q is 

‖ Q ‖ F = 

√ ∑ 

i, j ‖ Q (i, j) ‖ 2 = 

√ 

trace ( Q 

T Q ) where T represents the 

transpose operator. The definition of l p norm for a vector v ∈ � 

N is 

‖ v ‖ p � ( 
∑ N 

k =1 | v (k ) | p ) 1 p , p ≥ 1 . 

The remainder is arranged as follows. Some preliminaries are 

given in Section 2 to state the motivation of developing such a 

novel model. The proposed model which does not need the SRE is 

shown in Section 3 and the corresponding optimal sensing prob- 

lem is solved in this section. The synthetic and real data experi- 

ments are carried out in Section 4 to demonstrate the efficiency 

and effectiveness of the proposed method. Some conclusions are 

given in Section 5 to end this paper. 

2. Preliminaries 

A sparsifying dictionary � for a given dataset { x k } P k =1 
is usually 

obtained by considering the following problem 

{ �, θk } = arg min 

˜ �, ̃ θk 

P ∑ 

k =1 

‖ x k − ˜ � ˜ θk ‖ 

2 
2 s.t. ‖ ̃

 θk ‖ 0 ≤ K (7) 

which can be addressed by some practical algorithms [18] , among 

which the popularly utilized are the K-singular value decompo- 

sition (K-SVD) algorithm [19] and the method of optimal direc- 

tion (MOD) [20] . As stated in the previous section, the SRE e k = 

x k − �θk is generally not nil. We concatenate all the SRE { e k } into 

an N × P matrix: 

E � X − ��

which is referred to as the SRE matrix corresponding to the train- 

ing dataset { x k } and the learned dictionary �. 

The recent work in [15,16] attempted to design a robust projec- 

tion matrix with consideration of the SRE matrix E and proposed 

to solve 

� = arg min 

˜ �
‖ I L − �T ˜ �

T ˜ ��‖ 

2 
F + λ‖ ̃

 �E ‖ 

2 
F (8) 

or 

� = arg min 

˜ �, G ∈ H ξ
‖ G − �T ˜ �

T ˜ ��‖ 

2 
F + λ‖ ̃

 �E ‖ 

2 
F (9) 
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