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a b s t r a c t 

This paper develops a new nonparametric method that is suitable for detecting slowly-varying nonsta- 

tionarities that can be seen as trends in the time marginal of the time-varying spectrum of the signal. The 

rationale behind the proposed method is to measure the importance of the trend in the time marginal 

by using a proper test statistic, and further compare this measurement with the ones that are likely to 

be found in stationary references. It is shown that the distribution of the test statistic under stationarity 

can be modeled fairly well by a Generalized Extreme Value (GEV) pdf, from which a threshold can be 

derived for testing stationarity by means of a hypothesis test. Finally, the new method is compared with 

other ones found in the literature. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Stationarity is a crucial assumption for many statistical models, 

but many real-world signals turn out to be nonstationary. For in- 

stance, rainfall [1] and sunspot [2] signals are real-world processes 

that commonly exhibit nonstationary behaviors. Assessment of sta- 

tionarity is thus an important task in signal processing and time 

series analysis. The goal of this paper is to propose a method suit- 

able for testing slow nonstationary evolutions. As a matter of fact, 

detecting such nonstationarities is especially challenging and most 

of traditional tests fail. 

Several stationarity tests have been proposed in the last 

decades, some being rooted in time series modeling [3–5] , spec- 

tral analysis [6] , or detection of abrupt changes [7] . The emerg- 

ing alternatives in the literature can be categorized into paramet- 

ric and nonparametric approaches. The definition of nonparametric 

technique adopted in this work is that of a method which does 

assume any a priori functional form or parametric model for the 

input signal [8] . Therefore, even if the technique makes use of a 

particular window function to analyze the signal (which could be 

considered a priori a kind of model), if the methods requires no 
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assumption regarding the distribution (Gaussian, gamma, etc.) or 

process model (TVAR, ARMA, etc.) of the input signal, then we con- 

sider this method as nonparametric. Nonparametric methods may 

be preferable in real-world applications, as the performance of a 

parametric method depends on the accuracy of the chosen model, 

which is hardly assessed for real-world data. 

Methods for detecting slow nonstationary evolutions, however, 

are more common in the class of parametric techniques. Some 

parametric methods that have been proposed in the past years 

assume the underlying signal can be modeled by a time-varying 

autoregressive process (TVAR) [3,4,9,10] . Among the nonparamet- 

ric methods, the work in [11] has presented a technique for de- 

tecting changes in high-order statistics, whereas [12] has proposed 

a test for second-order stationarity in the TF domain. A common 

drawback of TF-based methods, however, is the computational load 

required to estimate full TF representations [13] . Moreover, tradi- 

tional TF representations often estimate poorly the spectral con- 

tent at very low frequencies [14] . The latter is an important issue if 

the goal is to detect slowly-varying nonstationarities. In this regard, 

the method of [12] has been modified in [15] so as to improve the 

detection of nonstationary signals with spectral content more con- 

centrated at low frequencies. Some other methods have also been 

proposed in the literature to improve the resolution of TF trans- 

forms at low frequency bands [16,17] . Unfortunately, these modifi- 

cations end up increasing even more the computational complexity 

of the TF-based approaches. 

http://dx.doi.org/10.1016/j.sigpro.2017.08.026 

0165-1684/© 2017 Published by Elsevier B.V. 

http://dx.doi.org/10.1016/j.sigpro.2017.08.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.08.026&domain=pdf
mailto:dougdabaso@gmail.com
mailto:jocelyn.chanussot@gipsa-lab.grenoble-inp.fr
mailto:Anne-Catherine.Favre-Pugin@ense3.grenoble-inp.fr
mailto:Pierre.Borgnat@ens-lyon.fr
http://dx.doi.org/10.1016/j.sigpro.2017.08.026


242 D. Baptista de Souza et al. / Signal Processing 143 (2018) 241–252 

(a)
100 200 300

x 1
(n

)

-5

0

5

Signals

40

Time

TF representations

20
00

10
20

Freq.

60

40

20

0
30

(d)
100 200 300

x 2
(n

)

-5

0

5

40

Time

20
00

10
20

Freq.

60

40

20

0
30

(f)
100 200 300

y 2
(n

)

0

50

100

150

200

250

(c)
100 200 300

y 1
(n

)

0

50

100

150

200

250

Time marginals

(e)

(b)

Fig. 1. (a) A stationary Gaussian signal with μ = 0 , σ 2 = 1 and length N = 300 . (d) 

A Gaussian signal with time-varying mean and variance of the same length. The 

TF representations of x 1 ( n ) and x 2 ( n ) are shown in (b) and (e). Their time marginal 

series y 1 ( n ) and y 2 ( n ) are shown in (c) and (f). 

In this paper, we show how a nonparametric test for slow non- 

stationary evolutions can be built in time domain, by developing 

a hypothesis test for the presence of trends in the marginal of 

the time-varying spectrum. A crucial point of the proposed tech- 

nique is that we compute the time marginal directly in time do- 

main, therefore avoiding the problems mentioned above involving 

TF representations. We remark that this paper is a modified and 

extended version of the work presented in [18] . Different from the 

present paper, the work in [18] has been built in TF domain and 

has not been developed as a proper hypothesis test. To build the 

new stationarity test, concepts like bootstrapping and GEV model- 

ing are introduced. Furthermore, this paper develops the mathe- 

matics to describe the link between slowly-varying nonstationari- 

ties and trend-like structures in the time marginals. Also, the ex- 

perimental study is extended significantly, by testing more nonsta- 

tionary processes against a longer list of alternative methods. 

This paper is organized as follows. In Section 2 , we show how 

nonstationarities that vary slow in time can appear as trends in 

the time marginal. We define how to approximate these trends 

and assess their significance by means of the trend importance es- 

timator. In Section 3 , we describe the framework and the resam- 

pling method needed to build the hypothesis test. In Section 4 , 

we analyze the behavior of the trend importance estimator in sta- 

tionary and nonstationary situations. In Section 5 , we propose a 

model for the distribution of this estimator under stationarity. This 

model allows for characterizing a hypothesis test for stationarity in 

Section 6 . The experimental study and the conclusions are shown 

in Sections 7 and 8 , respectively. 

2. The rationale behind the framework 

This paper proposes a method for detecting slowly-varying non- 

stationarities that can be seen as a trend in the time marginal y ( n ) 

of the time-varying spectrum of the signal. As illustration, Fig. 1 

shows the time-varying spectra and the time marginals of a sta- 

tionary Gaussian signal ( x 1 ( n )) and a nonstationary one ( x 2 ( n )), 

( Fig. 1 a and d, respectively). The mean and variance of the non- 

stationary process start to increase slowly at n = N/ 2 . Notice the 

difference between the two TF representations ( Fig. 1 b and e) and 

the trend-like behavior that can be seen in the time marginal of 

the nonstationary process ( Fig. 1 f). 

For testing nonstationary behaviors that appear as temporal 

structures in the time marginal y ( n ), the tasks of computing y ( n ) 

should be performed. A straightforward approach to compute y ( n ) 

is to intregrate over the frequency axis the TF representation of 

x ( n ) [19] . However, such approach would require the estimation of 

full TF representations, for the signal x ( n ) and any possible station- 

arized reference used by the method [12] . Unfortunately, resort- 

ing to TF representations to compute y ( n ) would lead to the prob- 

lems mentioned in Section 1 regarding computational complexity 

[13] and poor estimation of the spectral content at very low fre- 

quencies [14] . Thanks to the marginal properties of TF distributions 

[19] , the time marginal y ( n ) of the TF representation of a given 

real, discrete-time signal x ( n ) can be easily computed by squaring 

the result of the numerical convolution of x ( n ) and a given short- 

time window h ( n ): 

y (n ) = 

[ 
x (n ) ∗ h (n ) 

] 2 
. (1) 

Doing so, we can compute y ( n ) without having to deal with the 

estimation of TF representations. According to the properties of 

quadratic TF distributions, (1) is an approximation of the instanta- 

neous power (| x ( n )| 2 ) of the signal [19] . Here, the study of station- 

arity is reduced to the study of the time marginal computed by (1) . 

Therefore, the proposed method is developed in the time domain, 

as it uses only information coded in y ( n ). In following section, we 

show how the computation of y ( n ) via (1) is affected if stationarity 

does not hold. 

2.1. The influence of a nonstationary behavior on the time marginal 

computation 

Let us assume the short-time window h ( n ) in (1) contains L 

samples, or weights, given by h (0) , h (1) , . . . , h (L − 1) , where L � N 

and N is the number of samples of the signal x ( n ). Then, (1) can 

be written as follows: 

y (n ) = 

[ L −1 ∑ 

l=0 

h (l) x (n − l) 
] 2 

, (2) 

The choice of the (deterministic) window function h ( n ) and its size 

L will be discussed in Section 2.6 . After some algebra, one can 

rewrite (2) as follows: 

y (n ) = 

L −1 ∑ 

l=0 

h 

2 (l) x 2 (n − l) 

+2 

L −1 ∑ 

l=1 

L −1 −l ∑ 

j=0 

h ( j) h ( j + l) x (n − j) x (n − j − l) (3) 

from where an expression for the expected value of y ( n ) can be 

obtained 

E [ y (n )] = 

L −1 ∑ 

l=0 

h 

2 (l) E [ x 2 (n − l)] 

+ 2 

L −1 ∑ 

l=1 

L −1 −l ∑ 

j=0 

h ( j) h ( j + l) E [ x (n − j) x (n − j − l)] . (4) 

Now, we define the time-varying autocorrelation function R x ( n, l ) 

of x ( n ) [20] : 

R x (n, l) = E [ x (n ) x ∗(n − l)] , (5) 

which is function of both time n and lag l . Given (5) , one can then 

express (4) as function of R x ( n, l ): 

E [ y (n )] = 

L −1 ∑ 

l=0 

h 

2 (l) R x (n − l, 0) 
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