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a b s t r a c t 

In this work, we derive the optimum equalizer according to the General Maximum Likelihood (GML) prin- 

ciple and show the optimality of the constant-modulus algorithm (CMA) according to the GML principle. 

This reported discussion illustrates why CMA works well and hence is so popular. Moreover, we show 

that the minimization of normalized variance algorithm (MNVA) previously introduced by the authors, as 

much as the asymptotically equivalent Kurtosis maximization algorithm and “Rayleigh-ness” test criteria, 

are asymptotically optimum according to the GML criterion. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Blind (non-data-aided) methods employing pre- and post- 

correlation techniques have been widespread investigated in many 

communication systems [1–3] . In particular, blind adaptive multi- 

user detection based on the constant modulus algorithm (CMA) 

has received a lot of attention [4–5] . CMA is also a promising 

technique for peak-to-average-power-ratio (PAPR) reduction in Or- 

thogonal Frequency Division Multiplexing (OFDM)-based commu- 

nications, such as in Long Term Evolution (LTE) systems [6] . In 

CMA equalizers, we are dealing with the maximization problem 

of a likelihood objective function, depending on a number of un- 

knowns to be estimated (the equalizer coefficients), but also char- 

acterized by one more random parameter of the system under ob- 

servation (i.e. an amplitude factor compensating for the gain of the 

whole chain). In the seminal book of Van Trees [7] , the problem of 

the maximum likelihood (ML) estimation of unknown parameters 

in the presence of further random parameters was effectively ad- 

dressed. According to Van Trees’ approach, three solving ways must 

be followed when the ambiguity function depends on one param- 

eter. If we may assume a statistical model for that parameter, the 

likelihood function is averaged over the parameter distribution to 

define an unconditioned ML detection and estimation. Otherwise, 

if no statistical information is available (i.e. no distribution can be 

a priori assumed for the unknown parameter), a possible solution 
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is to consider the ML solution conditioned to a given set of values 

for the unknown parameters (conditioned ML criterion). The oper- 

ating problem still remains since one should wonder which values 

would have to be considered as the most likely. Conversely, the 

only a posteriori knowledge can be taken into account by consider- 

ing the ML estimate for the unknown parameter to be substituted 

in the ambiguity function to be maximized. This latter solution, 

called generalized ML (GML) criterion [7] , is equivalent to define a 

particular ML detection and estimation conditioned to the ML es- 

timate of the parameter. In our case, the GML criterion reduces to 

the ML criterion itself. As reported in the following of our work, 

the maximization of the likelihood function should bring to the 

same formal solution, since both the criteria convey to the same 

principal scheme. We know that this result is not general at all 

(e.g. see the sufficient conditions and the counterexamples in hy- 

pothesis testing [8] or the discussion on its optimality for signal 

detection in [9] ), while such an academic discussion is out of the 

scope of the paper. 

A new blind equalizer has been introduced in literature namely 

MNVA, i.e. minimization of normalized variance algorithm [10] . 

Authors showed that the MNVA is asymptotically equivalent to the 

well-known CMA, as well as to the Kurtosis maximization algo- 

rithm (KMA) [11] , because they pursue the same “Ricianity” cri- 

terion already employed in the “Rayleigh-ness” test for spread- 

spectrum code acquisition [12] . Moreover, in [10] authors showed 

the asymptotic equivalence between all the CMA schemes (e.g. nor- 

malized CMA (N-CMA) [13,14] , the signed error CMA (SE-CMA) 
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[15–17] , the signed regressor CMA (SR-CMA) [18,19] , and the signed 

error signed regressor CMA (SS-CMA)) [20,21] . 

In this note, we theoretically explain why they are optimum ac- 

cording to the GML criterion. We derive the optimum equalizer ac- 

cording to the GML principle, illustrating why CMA is so popular. 

The remainder of this correspondence is organized as follows. In 

Section 2 , we first derive the GML optimality for the simpler case 

of coherent data-aided equalization. The derivation of the optimal- 

ity of the blind equalizers will be approached in the second half of 

Section 2 , before our conclusions finally drawn in Section 3 . 

2. Post-despreading application of GML criterion 

The ML criterion (both conventional and general version) re- 

quires to statistically modelling the received signal for any set of 

values of the parameters to be estimated. The model may vary in 

significant way whether the operating unknowns’ sets are near or 

far from the optimum ones. In practice, either local or global mod- 

els have to be assumed, respectively within the neighbourhood of 

the actual maximum or far away. Nevertheless, the goal of a maxi- 

mization procedure consists in reaching the absolute maximum of 

the objective function. In such a case, the absolute maximum of 

the optimality function happens while the local model asymptot- 

ically applies. Therefore, we emphasize that the statistical model 

employed in the following maximization is based on the validity 

of the assumption of the quasi-synchronous condition (i.e. the vari- 

ance of the output of the matched filter can be considered as a 

constant ). In a non-equalized environment, the above asymptotic 

approximation may be not more valid. In practice, the local ob- 

jective function may apply after a pre-equalizer has brought the 

system in the vicinity of the actual maximum. Our paper is fo- 

cused on non-coherent blind equalization. Nevertheless, to derive 

the GML optimality of all the constant modulus equalizers (CMA, 

MNVA , KMA , and others), it can be useful to start from the simpler 

academic case of coherent data-aided equalization. The derivation 

of the optimality of the blind equalizers will be approached just 

further, modifying the basic scheme of the coherent (non-blind) 

estimation. 

2.1. Data aided equalization 

We consider here K independent successive symbols with rate 

T . Because we aim to model the in-sync situation to implement lo- 

cal ML detection, the perfect orthogonality between signal wave- 

forms will be assumed after the equalizer. In fact, our objective is 

just to model the system in the vicinity of the optimum operating 

point. On the other side, we aim to estimate the equalizer’s co- 

efficients to reach the ML condition. Therefore, we neglect in our 

analysis the windowing effects between contiguous symbols, so 

that the simpler one-shot receiver can be equivalently considered. 

In fact, the equalizer perfectly compensates for distortions due to 

the channel and the receiver becomes a one-shot receiver based 

on symbol-detection in independent noise. The principle scheme 

of the (locally optimum) ML coherent receiver of the k -th symbol, 

under the in-sync condition, is depicted in Fig. 1 a. For sake of sim- 

plicity, all the signals are expressed in terms of their representative 

vectors . The signal r(t) represented by the vector r is received from 

the channel (with unknown attenuation factor). The signal r in- 

cludes both additive noise and interference effects. It is correlated 

with h k , which accounts for spreading, chip shaping, and data sym- 

bol b k , with k = 1 , …, K . The symbols are here assumed to belong to 

a (unitary) constant-modulus constellation (e.g. QPSK). The signal 

g(t) , denoted by g , is then (near perfectly) equalized (and synchro- 

nized) by the linear array with the equalizer’s vector coefficients 

w . The result of the scalar product x k = w 

H ×g is multiplied by a 

factor A , to compensate for the unknown channel attenuation and 

the equalizer’s gain. The operator { ·} H means complex conjugate 

transpose. In such a way, we can exploit the (unitary) constant- 

modulus constraint of the possible data symbols (i.e. │b k │= 1) by 

assuming a unitary output in the ideal absence of noise and in- 

terference. Let us assume that the multi-user interference is rep- 

resented by the sequence { e k }. This sequence can be considered as 

an uncorrelated sequence because, as happens in many communi- 

cation networks, the effects of multi-users interference can be as- 

sumed to be greater than the thermal noise component (that can 

be discarded in our discussion without loss of generality). 

Therefore, the effect of noise and interference on the output 

sample can be regarded as an additive random variable affecting 

the constant output (say y k = 1 + e k ). The output sample y k finally 

goes to the ML computation device. Its maximization brings to a 

feedback tuning of the system’s parameters to be set, namely the 

vector of equalizer’s coefficients w and the scalar gain factor A . In 

practice, the more likely set of { w , A } that produces the more con- 

stant output y k around unity is chosen. The likelihood function of 

the output signal y k for k = 1 , …, K requires expressing its joint 

probability density function (PDF). The output y k can be asymptot- 

ically modelled as a non-zero complex Gaussian random variable, 

due to the central limit’s theorem. It assumes a near constant value 

under an ideal synchronization condition ( in - sync ). We are then as- 

suming the asymptotic Gaussianity of the random series y = { y k }, 

characterized by the following mean and variance (non-varying un- 

der the in - sync case): 

E[ y k ] = E [ 1 + e k ] = b ∗k b k = 1 , var [ y k ] = var [ e k ] = σ 2 
e . (1) 

The PDF of a K -dimensional complex Gaussian random indepen- 

dent and identically distributed (i.i.d.) series y = { y k } conditioned to 

the parameters’ values { w , A } can be expressed as: 

p ( y | w , A ) = 

1 (
πσ 2 

e 

)K 
exp 

{ 

− 1 

σ 2 
e 

K ∑ 

k =1 

| y k − 1 | 2 
} 

. (2) 

According to the scheme in Fig. 1 a, the variable y k depends on 

both the parameters w and A , while the variable x k is function of 

the equalizer’s coefficients w only. For sake of compactness of the 

algebraic expressions, such explicit dependence will be omitted in 

the following derivation. The ML detector looks for the more likely 

value of { w , A } that satisfies the K -dimensional complex Gaussian 

statistical model of { y k }, whose mean and variance have been de- 

fined before. In fact, it maximizes the following function: 

{ w ML , A ML } = { w , A } : MA X w ,A { p ( y ) | w , A } 

= MI N w ,A 

{ 

1 

σ 2 
e 

K ∑ 

k =1 

| y k − 1 | 2 
} 

= MI N w ,A 

{ 

1 

σ 2 
e 

K ∑ 

k =1 

| A · x k − 1 | 2 
} 

(3) 

The relationship (3) is a function of the unknowns w and A . Let 

us first impose that the partial derivative on the unknown A is zero 

to obtain its ML estimate A ML , then obtaining: 

A ·
K ∑ 

k =1 

| x k | 2 = 1 ·
K ∑ 

k =1 

x ∗k that is A ML = 

K ∑ 

k =1 

x ∗k 
/ K ∑ 

k =1 

| x k | 2 (4) 

As a consequence, we can rewrite the ML equation, formerly 

(3) function of w and A , for A = A ML to be finally maximized versus 

w according to the GML criterion [6] as follows: 

w ML : MI N w 

{ p ( y ) | w , A ML } = MI N w 

{ 

K ∑ 

k =1 

| A ML − x k − 1 | 2 
} 
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