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a b s t r a c t 

Auto-Encoders, as one representative deep learning method, has demonstrated to achieve superior per- 

formance in many applications. Hence, it is drawing more and more attentions and variants of Auto- 

Encoders have been reported including Contractive Auto-Encoders, Denoising Auto-Encoders, Sparse Auto- 

Encoders and Nonnegativity Constraints Auto-Encoders. Recently, a Discriminative Auto-Encoders is re- 

ported to improve the performance by considering the within class and between class information. In 

this paper, we propose the Large Margin Auto-Encoders (LMAE) to further boost the discriminability by 

enforcing different class samples to be large marginally distributed in hidden feature space. Particularly, 

we stack the single-layer LMAE to construct a deep neural network to learn proper features. And finally 

we put these features into a softmax classifier for classification. Extensive experiments are conducted 

on the MNIST dataset and the CIFAR-10 dataset for classification respectively. The experimental results 

demonstrate that the proposed LMAE outperforms the traditional Auto-Encoders algorithm. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Feature extraction plays a key role in computer vision applica- 

tions such as image annotation, face recognition, action analysis, 

object detection, target tracking and video retrieval. Auto-Encoders, 

as one representative deep learning method, has demonstrated 

to achieve superior performance for feature representation learn- 

ing [1–5] . Recently, various variants of Auto-Encoders have been 

brought up. They are Sparse Auto-Encoders (SAE) [6–8] , Denois- 

ing Auto-Encoders (DAE) [9–13] , Contractive Auto-Encoders (CAE) 

[14–16] , Nonnegativity Constraints Auto-Encoders (NCAE) [17,18] , 

Laplacian Regularized Auto-Encoders (LAE) [19,20] , Hessian Regu- 

larized Sparse Auto-Encoders (HSAE) [21] , Bayesian Auto-Encoder 

(BAE) [22] , Coupled Deep Auto-Encoder (CDA) [23] , Multimodal 

Deep Auto-Encoder (MDA) [24] and Discriminative Auto-Encoder 

[25] . SAE introduced the sparsity regularization into the code vec- 

tor of the hidden layer [6,7] or the output layer [8] . DAE was 

trained to make the learned representations robust to partial cor- 

ruption of the input pattern [9–12] . A step further, the Denoising 

Auto-Encoder was trained in a convolutional way that can abstract 

hierarchical feature representations from raw visual data [13] . CAE 

added a penalty term computed by the Forbenius norm of the Ja- 

cobian matrix on the hidden layer features [14] . And then Rifai et 
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al. extended the method by adding a penalizing term on second 

order derivatives of the encoders’ output with respect to the in- 

put [15] . NCAE trained the Sparse Auto-Encoder by applying non- 

negativity constraints [18] on the weight matrix [17] . LAE added 

a Laplacian regularization penalty term to enhance the locality- 

preserving property of learned encoders for data points [19] . HSAE 

applied the Hessian regularization to SAE, which can well preserve 

local geometry for data points [21] . In the algorithm of BAE, the 

author combined Auto-Encoder with Bayesian Net, and constructed 

multi-layer Bayes Net as a recognition system [22] . CDA was based 

on an individual architecture that can simultaneously learns the in- 

trinsic representations of low-resolution and high-resolution image 

patches for single image super-resolution [23] . MDA extracted fea- 

tures with multimodal fusion and back-propagation deep learning 

[24] . 

All the abovementioned variants of Auto-Encoders learnt the 

feature representation without considering the label information 

in the pre-training phase. It is undeniable that the optimization 

process will be more effective with an unsupervised pre-training 

to initialize the model [26] . And if we enforce the discriminabil- 

ity of the features by using the labels, that will promote the ef- 

ficiency of the classifier [27,28] . The discriminative Auto-Encoder 

aimed to boost the discriminability of the hidden layer features by 

minimizing the within class scatter and maximizing the between 

class scatter of samples [25] , the method was efficacious. In this 

paper, we propose a Large Margin Auto-Encoders (LMAE) to fur- 
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Fig. 1. The framework of LMAE for classification. 

ther enforce the discriminability by enforcing different class sam- 

ples to be large marginally distributed in hidden feature space. Par- 

ticularly, we employ a large margin penalizing term that constrains 

the samples with different class labels to be distanced by an safety 

margin in the k -nearest neighborhood [29–32] . Fig. 1 shows the 

deep architecture by stacking multiple layers of LMAE for classifi- 

cation. In each layer, LMAE attempts to minimize the reconstruc- 

tion error between the inputs and outputs while separating the 

different class samples with a large margin. Then, a deep architec- 

ture is constructed by stacking multiple layers of LMAE. Finally, the 

learnt feature representations are put into a classifier for recogni- 

tion. 

To assess the effectiveness of our method, we apply LMAE on 

two popular datasets including the MNIST dataset and the CIFAR- 

10 dataset for classification. And we also compare the proposed 

LMAE with the traditional Auto-Encoders. The experimental results 

demonstrate that LMAE always outperforms the traditional Auto- 

Encoders algorithm. In summary, our contribution in this paper 

is threefold: (1) we integrate the large margin penalty into the 

framework of Auto-Encoders that boost the discriminability signifi- 

cantly, (2) we provide the optimization of the proposed Large Mar- 

gin Auto-Encoders (LMAE) algorithm, and (3) we conduct compar- 

ing experiments on two popular datasets respectively to demon- 

strate the advantages of LMAE. 

We organize the rest of this paper as follows. In Section 2 , we 

briefly review the related works including the traditional Auto- 

Encoders, the Discriminative Auto-Encoder and the Large-Margin 

kNN classification method. In Section 3 , we present the proposed 

LMAE and the corresponding optimization. In Section 4 , we de- 

scribe our extensive experiments and discuss the experimental re- 

sults. Finally, in Section 5 , we conclude the paper with some dis- 

cussions and propose possible extensions of our current method. 

2. Related works 

In this section, we briefly review the related works including 

the traditional Auto-Encoders, Discriminative Auto-Encoders and 

the Large-Margin Nearest Neighbor classification. 

2.1. Auto-Encoders 

The basic Auto-Encoder [33] aims to find a parameter vector θ
for the encoder and decoder by minimizing the reconstruction er- 

ror J AE ( θ ). The objective function can be expressed as the following 

problem: 

min 

θ
J AE ( θ ) = min 

θ

∑ 

k 

L ( x k , g θ ( f θ ( x k ) ) ) , (1) 

where x k is a training sample, L ( x, r ) = ‖ x − r‖ 2 is the reconstruc- 

tion error of the input and output data. f θ (x ) = s f ( b 
e + W x ) and 

g θ (x ) = s g ( b z + W 

′ x ) are the encoder and decoder mapping func- 

tions respectively. Usually, s f and s g can be the general activa- 

tion functions such as the sigmoid function. The parameter vector 

θ = { b e , W, b z , W 

′ } , where b e and b z are bias vectors of the encoder 

and decoder, and W and W 

′ are weight matrices of the encoder 

and decoder. 

For the traditional Auto-Encoder, a weight decay term J wd can 

be added into the overall objective function to control the decreas- 

ing of the weight magnitudes [34,36] . Significantly, it can improve 

the generalization and avoid the overfitting in the neural network 

by suppressing the effects of static noise on the targets and the 

irrelevant components of the weight vector [35] . 

A deep architecture can be constructed by stacking the above- 

mentioned basis Auto-Encoders, in which the output of the hidden 

layer in the first encoder is treated as the input of the second en- 

coder. And then the last layer of the deep architecture obtains the 

final representation of the samples that can be used for classifica- 

tion tasks. 

2.2. Discriminative Auto-Encoders 

The Discriminative Auto-Encoder tries to boost the discrimina- 

tive of the hidden layer features [25] . Denote e i, j as the hidden 

layer features of the j th sample from the class i . The discriminative 

Auto-Encoders simultaneously minimizes the within-class scatter 

S w 

( e ) and maximizes the between-class scatter S b ( e ). The S w 

( e ) and 

S b ( e ) can be defined as: 

S w 

( e ) = 

c ∑ 

i =1 

∑ 

e i, j ∈ i 

(
e i, j − ē i 

)(
e i, j − ē i 

)T 
, (2) 

S b ( e ) = 

c ∑ 

i =1 

m i ( ̄e i − ē ) ( ̄e i − ē ) 
T 
, (3) 

where ē i and ē are denoted as the mean vector of e i and e , respec- 

tively. And m i is the samples number of class i . The discriminative 

regularization term can be defined as: 

L ( e ) = t r ( S w 

( e ) ) − t r ( S b ( e ) ) . (4) 

Then, the objective function of the Discriminative Auto-Encoder 

can be expressed as the following problem: 

min 

θ
J Dis −AE ( θ ) = min 

θ

[ 
J AE ( θ ) + 

1 

2 

λJ wd + 

1 

2 

γ L ( e ) 

] 
, (5) 

where λ and γ are parameters to balance the different penalty 

terms respectively. 

2.3. Large-Margin kNN classification 

The Large-Margin kNN classification method (LMNN) attempts 

to shrink distances of neighboring same labeled points and to sep- 

arate points in different classes [30,37] . The LMNN optimization 

problem can be formulated as the following minimization prob- 

lem: 
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