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a b s t r a c t 

In this paper, the design of perfect reconstruction (PR) cosine-modulated filter banks (CMFBs) is imple- 

mented via quadratically constrained quadratic programming (QCQP) and least squares (LS) optimization. 

To this end, a PR CMFB design problem is formulated as a nonconvex QCQP after re-arranging the coeffi- 

cients of the prototype filter. Then a deep insight is offered into the algebraic relationship between the PR 

conditions and near-perfect reconstruction (NPR) ones for CMFB designs. Here we theoretically show that 

the NPR conditions are just the summations of the PR conditions. Firmly in the light of this relationship, 

a two-stage method is proposed for PR CMFB design. We firstly solve an NPR CMFB problem to obtain its 

optimal solution as a reference point, then model the PR CMFB design problem as a series of small-sized 

LS problems near the reference point. And we solve the LS problems in parallel with cheap iteration. Our 

analysis and numerical results show that the proposed method bears superior performance on effective- 

ness and efficiency, especially in the case of designing PR CMFBs with large number of channels. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Perfect reconstruction (PR) cosine-modulated filter banks 

(CMFBs) are of great interests due to their extensive applications 

that include data compression, denoising, feature detection and ex- 

traction, and signal transmultiplexing. Fig. 1 illustrates a typical M - 

channel maximally decimated parallel filter bank where H k ( z ) and 

F k ( z ), 0 ≤ k ≤ M − 1 , are analysis and synthesis filters. In a CMFB, 

the impulse response of the analysis and synthesis filters h k ( n ) and 

f k ( n ) are cosine-modulated versions of the prototype h ( n ) [1] , i.e., 

h k (n ) = 2 h (n ) cos 

(
π

2 M 

(2 k + 1) 
(

n − N − 1 

2 

)
+ (−1) k 

π

4 

)
, 

n = 0 , 1 , · · · , N − 1 

f k (n ) = 2 h (n ) cos 

(
π

2 M 

(2 k + 1) 
(

n − N − 1 

2 

)
− (−1) k 

π

4 

)
, 

n = 0 , 1 , · · · , N − 1 , 

for k = 0 , 1 , · · · , M − 1 , where N is the length of h ( n ). 

The theory and design of PR CMFBs have been studied exten- 

sively in the past. In most cases, a PR CMFB design problem is cast 
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to solve following optimization or the analogous, 

minimize 
g∈ R mM 

g T P g (1a) 

subject to g T k G n g k = 

δ(n ) 

2 M 

2 
, n = 0 , 1 , · · · , m − 1 ;

k = 0 , 1 , · · · , M/ 2 − 1 , (1b) 

where m is any positive integer subject to N = 2 mM throughout 

this paper, and δ( n ) is given by 

δ(n ) = 

{
1 , n = 0 , 

0 , otherwise. 

For the derivation on g , P , g k and G n , please refer to Section 2.1 . 

Problem (1) is a nonconvex quadratically constrained quadratic 

programming (QCQP) since the constraints in (1b) are all quadratic 

equality ones. It is NP-hard in general [2,3] . That is to say, it is 

very hard to locate its global optimal solution due to the exis- 

tence of local minima [4] . In some special cases, by exploiting the 

hidden convexity of this problem, it can be converted into a con- 

vex optimization problem [5,6] and then could be solved in convex 

optimization domain. But in general, only certain relaxation tech- 

niques like the semidefinite relaxation [3,7,8] , the weighted least 

squares algorithm [9] , etc. are employed to approximately solve 

this class of problem. And in some cases, the design of PR CMFB 
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Fig. 1. M -channel maximally decimated filter bank. 

is just relaxed to the design of near-perfect reconstruction (NPR) 

CMFB, which is comparatively easy and many high efficient design 

methods have been developed for it [8,10–12] . 

However, an NPR CMFB can not meet the demands of many ap- 

plications [13,14] . Inspired by this fact, we rethink the quadratically 

constrained quadratic programming in this paper for the design of 

PR CMFBs. We design a PR CMFB through consecutive two stages. 

Firstly, a corresponding NPR CMFB is designed. Then using the de- 

signed NPR CMFB as a reference point, we theoretically achieve the 

goal of designing a PR CMFB by iteratively reducing the constraint 

violation measurement. Hence the contributions of this paper are: 

1) to formulate a PR CMFB design problem as a nonconvex QCQP 

after rearranging the coefficients of the prototype filter, as well as 

to an NPR CMFB design problem; 2) to dig out and theoretically 

show the algebraic relationship between PR conditions and NPR 

ones; and 3) to propose a two-stage method for the design of PR 

CMFB in the light of the relationship. 

The remainder of this paper is organized as follows. In 

Section 2 , the new method for designing PR CMFBs is proposed 

in detail. In Section 3 , numerical experiments are implemented to 

validate the proposed method. Finally, conclusions are drawn in 

Section 4 . 

2. Design PR CMFBs via QCQP and LS optimization 

2.1. Formulation of the design of PR and NPR CMFBs 

Consider the M -channel filter bank in Fig. 1 . Let H(z) = ∑ N−1 
n =0 h (n ) z −n with h (n ) = h (N − 1 − n ) be the linear-phase proto- 

type filter. In this paper, consider M is even. 

In [15] , the PR conditions can be stated as 1 

E k (z −1 ) E k (z) + E M+ k (z −1 ) E M+ k (z) = 

1 

2 M 

2 
, k = 0 , 1 , · · · , M/ 2 − 1 , 

(2) 

where E k ( z ) are the Type-I 2 M−polyphase components of the pro- 

totype filter h ( n ), i.e., 

E k (z) = 

m −1 ∑ 

n =0 

h (k + 2 Mn ) z −n . (3) 

1 Eq. (26) in [15] is multiplied by the scale factor 1 
M 

to make (2) coordinate with 

the derivation of NPR conditions in [1] . 

By substituting (3) into (2) , the PR conditions that guarantee a dis- 

tortionless and aliasing-free CMFB can be formulated as (1b) for 

n = 0 , 1 , · · · , m − 1 ; k = 0 , 1 , · · · , M/ 2 − 1 , and 

g k = 

[
h 

T 
k h 

T 
M+ k 

]T 
, G n = 

[
D n 0 

0 D n 

]
, (4) 

where 

h k = [ h (k ) h (2 M + k ) · · · h (2 M(m − 1) + k ) ] 
T 
, 

h M+ k = [ h (M + k ) h (3 M + k ) · · · h (2 Mm − M + k ) ] 
T 
, 

D n is an m × m matrix with the ( p, q )th element given by 

D n (p, q ) = 

{
1 , if q − p = n, 

0 , otherwise, 
p, q = 1 , 2 , · · · , m. 

Let g be half the set of prototype filter’s coefficients resorted as 

g = [ g T 0 g T 1 · · · g T M/ 2 −1 ] 
T . (5) 

Similar to that in [13] , we use the stopband edge frequency ω s and 

then the stopband energy 
∫ π
ω s 

| H(e jω ) | 2 d ω can be written as g T Pg . 

Here P is a positive definite matrix with the ( p, q )th element given 

by 

P (p, q ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

2 

[
π − ω s − sin (N − 1 − 2 p ′ ) ω s 

N − 1 − 2 p ′ 

]
, p = q, 

−2 

[
sin (p ′ − q ′ ) ω s 

p ′ − q ′ + 

sin (N − 1 − p ′ − q ′ ) ω s 

N − 1 − p ′ − q ′ 

]
, p � = q 

(6) 

for p, q = 0 , 1 , · · · , N/ 2 − 1 and p ′ , q ′ indicated by 

p ′ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

k + 2 nM, if p = n + 2 km and k + 2 nM < N/ 2 , 

N − 1 − k − 2 nM, if p = n + 2 km and k + 2 nM ≥ N/ 2 , 

k + (2 n + 1) M, if p = n + (2 k + 1) m and k + (2 n + 1) M < N/ 2 , 

N − 1 − k − (2 n + 1) M, if p = n + (2 k + 1) m and k + (2 n + 1) M ≥ N/ 2 . 

q ′ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

k + 2 nM, if q = n + 2 km and k + 2 nM < N/ 2 , 

N − 1 − k − 2 nM, if q = n + 2 km and k + 2 nM ≥ N/ 2 , 

k + (2 n + 1) M, if q = n + (2 k + 1) m and k + (2 n + 1) M < N/ 2 , 

N − 1 − k − (2 n + 1) M, if q = n + (2 k + 1) m and k + (2 n + 1) M ≥ N/ 2 . 

(7) 

Thus the design of PR CMFB can be integrally formulated as the 

combination of (1) and (4) –(7) . 

Now let’s get down to the derivation of an NPR CMFB design 

problem. In [1] , the NPR condition is stated as 

2 M−1 ∑ 

k =0 

H 

(
ze − jkπ/M 

)
H 

(
z −1 e jkπ/M 

)
= 1 , 

with j being imaginary unit. It also can be written as [8] 

g T Q n g = 

1 

4 M 

δ(n ) , n = 0 , 1 , · · · , m − 1 , (8) 

where Q n is an ( N /2) × ( N /2) diagonal block matrix, i.e., Q n = 

diag (G n , · · · , G n ) . So the NPR CMFB design problem can be formu- 

lated as 

minimize 
g 

g T P g 

subject to g T Q n g = 

δ(n ) 
4 M 

, n = 0 , 1 , · · · , m − 1 . 
(9) 

2.2. The relationship between PR and NPR conditions 

By the definitions of g k in (4) and g in (5) , following proposition 

can be given. 

Proposition 1. If the prototype filter with length N = 2 mM satisfies 

PR conditions, it holds that: 
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