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a b s t r a c t 

Signals with the time-varying frequency content are generally well represented in the joint time- 

frequency domain; however, the most commonly used methods for time-frequency distributions (TFDs) 

calculation generate unwanted artifacts, making the TFDs interpretation more difficult. This downside can 

be circumvented by compressive sensing (CS) of the signal ambiguity function (AF), followed by the TFD 

reconstruction based on the sparsity constraint. The most critical step in this approach is a proper CS-AF 

area selection, with the CS-AF size and shape being generally chosen experimentally, hence decreasing 

the overall reliability of the method. In this paper, we propose a method for an automatic data driven 

CS-AF area selection, which removes the need for the user input. The AF samples picked by the here- 

proposed algorithm ensure the optimal amount of data for the sparse TFD reconstruction, resulting in 

higher TFD concentration and faster sparse reconstruction algorithm convergence, as shown on examples 

of both synthetical and real-life signals. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In many real-life applications signal frequency content is a key 

information which needs to be extracted. In order to do this, one 

can simply use the Fourier transform, but in doing so, signal time 

attributes are lost. However, by using time-frequency distributions 

(TFD) one can analyze the evolution of signal energy as a function 

of both time and frequency, providing additional information about 

the signal nature. However, if signal has more than one linear fre- 

quency modulated (LFM) component, or a non-LFM component, its 

TFD gets corrupted by highly oscillatory artifacts. Quadratic TFDs 

(QTFD), most commonly used TFDs in practice, utilise filtering with 

2D low-pass filters, which inherently affects time-frequency (TF) 

localization properties [1] . The need for a trade-off between inter- 

ference suppression and TF localization has led to a number of TF 

localization improvement methods, one of which is described in 

the sequel. 

Over the last few years, compressive sensing (CS) has been 

an important research topic [2–5] , with applications in medicine 

[6,7] , geophysics [8,9] , communication [10,11] , etc. Traditionally, 

compressive sensing (CS) implies signal sampling with sub-Nyquist 

frequencies, with samples randomly picked [2–4,6] . However, the 
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samples can be picked to favour specific signal features, while dis- 

carding the others [12–14] . This is followed by a signal recon- 

struction algorithm for solving unconstrained optimization prob- 

lems (i.e. basis pursuit (BP) [15–22] , matching pursuit (MP) [23] , 

orthogonal matching pursuit (OMP) [24,25] , etc.). However, the re- 

construction algorithm leads to a meaningful result only if the sig- 

nal is sparse, which means that the signal can be represented in 

a certain domain with K non-zero coefficients, where K � N t ( N t 

being the number of signal samples in the time domain). Most 

signals are non-sparse in the domain of interest, but can become 

sparse (or approximately sparse) by applying a domain transfor- 

mation. For example, a sinusoidal signal can be represented with 

only one sample in the frequency domain. Ideal TFDs are sparse 

since they are composed of components instantaneous frequency 

(IF) trajectories, hence CS can be utilized in such a way to include 

only the signal components samples, while discarding the interfer- 

ence samples; by applying a reconstruction algorithm, resolution 

loss is minimised [7,8,13,14,25–30] . 

Current TF signal processing approaches have focused on var- 

ious optimization algorithms for signal reconstruction, leaving CS 

area size and shape selection underutilized. The CS area is usu- 

ally a rectangle, containing approximately N t samples inside of it 

[13,26,27] . In this paper, we propose a method for data driven au- 

tomatic CS area selection. Our goal is to select CS area as large as 

possible without artifact inclusion, which then increases the signal 

http://dx.doi.org/10.1016/j.sigpro.2017.06.013 

0165-1684/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.sigpro.2017.06.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.06.013&domain=pdf
mailto:vsucic@riteh.hr
http://dx.doi.org/10.1016/j.sigpro.2017.06.013


230 I. Volaric et al. / Signal Processing 141 (2017) 229–239 

reconstruction algorithm input data amount, hence decreasing its 

computational requirements. 

The paper is organized as follows. Section 2 gives a short in- 

troduction to TFDs, while Section 3 describes TFDs as a sparsity 

inducing signal representation, and introduces the CS area selec- 

tion algorithm. In Section 4 we compare different optimization al- 

gorithms performances based on the measure of reconstructed TFD 

concentration [31] for the case when the CS area is selected both 

manually and when it is selected automatically by the proposed 

method. 

2. Quadratic time-frequency distributions 

Let us consider an LFM signal z ( t ) with a time-varying phase 

ϕ( t ), and a slowly varying amplitude A ( t ) of the form: 

z(t) = A (t) e jϕ(t) . (1) 

Its ideal TFD, ̂ ρz (t, ω) , is a set of Dirac functions, with a perfect en- 

ergy localization around the signals instantaneous frequency, ω 0 ( t ): 

̂ ρz (t, ω) = A 

2 (t ) δ( ω − ω 0 (t ) ) , (2) 

with ω 0 (t) = d ϕ(t) /d t . The ideal TFD in most cases is impossible 

to accomplish, since practical TFDs are not perfectly localized, and 

furthermore, they are corrupted by the cross-terms. The Wigner- 

Ville distribution (WVD), W z ( t, ω), provides perfect localization for 

a single LFM component [1] : 

W z (t, ω) = 

∫ ∞ 

−∞ 

R z (t, τ ) e − jωτ dτ, (3) 

where R z ( t, τ ) is the signal localized autocorrelation function (LAF), 

defined as: 

R z (t, τ ) = z 

(
t + 

τ

2 

)
z ∗

(
t − τ

2 

)
. (4) 

However, if the signal has N c > 1 components, its LAF be- 

comes: 

R z (t, τ ) = 

N c ∑ 

i =1 

z i 

(
t + 

τ

2 

)
z ∗i 

(
t − τ

2 

)

+ 

N c ∑ 

i =1 

⎡ ⎢ ⎣ 

z i 

(
t + 

τ

2 

) N c ∑ 

j=1 
j � = i 

z ∗j 

(
t − τ

2 

)⎤ ⎥ ⎦ 

, (5) 

where the factors under the first sum are the auto-terms, and the 

remaining factors are the cross-terms. As it can be seen from (5) , 

the cross-terms are mathematical byproduct introduced by LAF’s 

quadratic nature, and will appear midway between each pair of 

components [1] . 

In the ambiguity function (AF), A z ( ν , τ ), defined as: 

A z (ν, τ ) = 

∫ ∞ 

−∞ 

R z (t, τ ) e − jνt dt 

= 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

W z (t , ω) e − jνt e jωτ dt dω, (6) 

the cross-terms can be filtered out with a 2D low-pass filter, since 

they are highly oscillatory, and thus located away from the AF 

plane origin [1] . However, in doing so, the auto-terms get partially 

filtered out as well, thus reducing TF concentration of the compo- 

nents. This has led to the formulation of QTFD as [1] : 

A z (ν, τ ) = A z (ν, τ ) g(ν, τ ) , (7a) 

ρz (t, ω) = W z (t, ω) ∗
t 
∗
ω 

γ (t, ω) , (7b) 

where g ( ν , τ ) and γ ( t, ω) are filter functions (also known as ker- 

nels), while A z (ν, τ ) and ρz ( t, ω) are the filtered AF and TFD, re- 

spectively. The symbols ∗
t 

and ∗
ω 

denote convolution in time and 

frequency, respectively. 

One of the state-of-the-art TFD is the compact kernel distribu- 

tion (CKD) defined as [32] : 

g(ν, τ ) = 

{
e 2 c e 

cD 2 

ν2 −D 2 e 
cE 2 

τ2 −E 2 | ν| < D, | τ | < E, 

0 , otherwise, 
(8) 

where the parameter c defines the shape of the kernel, while the 

parameters D and E specify the spread of the kernel along the re- 

spective AF axis. 

Since there is no single best performing kernel for all signals, 

the need to adaptively construct kernel has arisen. One of the 

best known methods is the radially Gaussian kernel (RGK) [33] , in 

which the kernel is obtained by solving the optimization problem 

with the following objective function: 

g opt (ν, τ ) = arg max 
g(ν,τ ) 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

| A z (ν, τ ) g(ν, τ ) | 2 dτdν, (9) 

with the constraints which ensure that the kernel has properties 

of the low-pass filter. Since cross-terms do not contain signal en- 

ergy, maximizing (9) ensures that the auto-term energy is trans- 

ferred from the AF to the resulting TFD, without attenuation, while 

avoiding the cross-terms. 

3. Time-frequency distribution as a sparsity inducing domain 

3.1. Compressed sensed ambiguity function 

As mention earlier, ideal TFDs are inherently sparse, since they 

are composed of the components IFs, thus requiring only N c N t < 

< N ω N t samples, where N c , N t , and N ω are the number of compo- 

nents, the number of time instances, and the number of frequency 

bins, respectively. The CS-AF, A 

′ 
z (ν, τ ) is formulated as: 

A 

′ 
z (ν, τ ) = φ(ν, τ ) � A z (ν, τ ) , (10) 

where the operator � denotes element-by-element matrix multi- 

plication, and φ( ν , τ ) is the sensing matrix which defines N 

′ 
ν × N 

′ 
τ

area 
 around the AF plane origin: 

φ(ν, τ ) = 

{
1 , (ν, τ ) ∈ 
, 

0 , otherwise . 
(11) 

The sensing matrix defined in this way discards highly oscillatory 

cross-terms located away from the domain origin, while preserving 

the auto-terms located closer to the origin. 

In the standard CS notation, matrix multiplication is commonly 

used to define connection between the observation and solution 

matrices, thus from (6) and (10) : 

A 

′ 
z (ν, τ ) = ψ · ϑ z (t, ω) , (12) 

where ψ is a domain transformation matrix, representing a two- 

dimensional Fourier transform, and ϑz ( t, ω) is a sparse TFD recon- 

structed from the CS-AF. However, in most practical realizations, 

ψ and its inverse are implemented as functions, since matrix free 

algorithms are significantly faster and require less memory space 

[17,20] . 

Since A 

′ 
z (ν, τ ) has cardinality card (A 

′ 
z (ν, τ )) = N 

′ 
ν · N 

′ 
τ sam- 

ples, and ϑz ( t, ω) has cardinality of card (ϑ z (t, ω)) = N t · N ω sam- 

ples, where card (A 

′ 
z (ν, τ )) � card (ϑ z (t, ω)) , the system is under- 

determined, thus ϑz ( t, ω) can have an infinite number of possible 

solutions, and the goal of the reconstruction algorithm is to find 

the optimal solution to: 

ϑ z (t, ω) = ψ 

H · A 

′ 
z (ν, τ ) = ψ 

H · φ(ν, τ ) � A z (ν, τ ) , (13) 



Download	English	Version:

https://daneshyari.com/en/article/4977476

Download	Persian	Version:

https://daneshyari.com/article/4977476

Daneshyari.com

https://daneshyari.com/en/article/4977476
https://daneshyari.com/article/4977476
https://daneshyari.com/

