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a b s t r a c t 

As a major concern, the existence of unwanted energy and missing traces in seismic data acquisition 

can degrade interpretation of such data after processing. Instead of analytical dictionaries, data-driven 

dictionary learning (DDL) methods as a flexible framework for sparse representation, are dedicated to the 

problem of denoising and interpolation. Due to their meaningful geometric repetitive structures, seismic 

data are intrinsically low-rank in the time-space domain. On the other hand, noise and missing traces 

increase the rank of the noisy data. Therefore, the clean data, unlike noise and missing traces, can be 

modeled as a linear combination of a few elements from a learned dictionary. In this paper, a parts-based 

2D DDL scheme is introduced and evaluated for simultaneous denoising and interpolation of seismic 

data. A special case of versatile non-negative matrix factorization (VNMF) is used to learn a dictionary. 

In VNMF, smoothness constraint can improve interpolation, and sparse coding helps improving denoising. 

The proposed method is tested on synthetic and real-field seismic data for simultaneous denoising and 

interpolation. Through experimental results, the proposed method is determined to be an effective and 

robust tool that preserves significant components of the signal. Comparison with four state-of-the-art 

methods further verifies its superior performance. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Remote data gathering of the subsurface earth’s physical prop- 

erties in numerical measurements is one of the geoinformation 

that needs to be processed well. Some goals of processing such 

data are to monitor earthquakes and tsunamis and manage nat- 

ural resources such as energy, fresh water and etc. In this context, 

geophysical methods are useful to keep away inessential digging of 

earth layers. These methods discover or deduce the existence and 

location of economically useful geological reservoirs, such as fos- 

sil fuels and hydrocarbons accumulations or determination of the 

earth’s crust and core structure. Among geophysical techniques, 

seismic reflection data acquisition is a well-known technique to 

map the subsurface distribution of stratigraphy and its structure 

that are images of the earth layers. Due to the existence of un- 

wanted coherent and incoherent energy (noise) [1] , missing traces 
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[2] , and the economic and physical limitations in seismic data ac- 

quisition [3] , researchers are motivated to introduce and investi- 

gate reconstruction and interpolation methods to achieve reliable 

high-quality seismic data. These methods are crucial before sub- 

sequent processing steps such as seismic migration and inversion 

[4,5] . 

Hitherto, several techniques and algorithms have been proposed 

over decades for noise attenuation and trace interpolation, either 

simultaneously or separately [1,6–8] . Most noise suppression meth- 

ods are applied in a transform domain (with orthogonal fixed dic- 

tionary) where clean data and noise are more distinguishable; the 

sparser representation results in the better performance [9,10] . We 

use sparse representation to refer to the domain in which the 

data can be represented by only a few coefficients. The orthog- 

onal dictionary is composed of basis function of the sparsifying 

transform. These techniques were applied in time-scales trans- 

forms such as wavelet, and curvelet [11–16] , or time-frequency 

transforms [17–21] . 

There are many cases where the seismic data are incomplete 

and some traces are missing. The process of recovering the missing 
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samples are called interpolation. Sparse transforms are also used 

to interpolate missing traces in seismic records [3,22,23] . In [23] , 

L1-norm minimization problem with sparsity constraint is success- 

fully solved to restore seismic data. The idea of these methods is 

that the missing traces result in non-sparse artifacts in transform 

domain where the data are represented sparsely. 

In addition to the mentioned methods for denoising and inter- 

polation, there are algorithms utilizing the inherent low-rank prop- 

erty of the seismic data such as [3,24,25] . Based on this premise, 

several techniques are proposed for reconstruction of the seismic 

data in different domains such as multichannel singular spectrum 

analysis (MSSA) [1,26] , damped MSSA [27–29] and also random- 

ized MSSA [30] . Classical f-x SSA operates in the frequency-space 

domain by embedding spatial data at a frequency slice into a Han- 

kel matrix. Noise and missing traces generally increase the rank 

of this meaningful matrix extracted from the data [31] . Therefore, 

the Hankel matrix of the corrupted observations, which should be 

low-rank in the case of the clean data, is restored using a trun- 

cated singular value decomposition (SVD) technique. They used an 

iterative thresholding algorithm similar to the method projected 

onto convex set (POCS) [32,33] for simultaneous denoising and 

interpolation. Another method in this category denoises the data 

using low-rank and sparse decomposition in the transform do- 

main where the data are approximately low-rank and the noise 

are sparse [34] . Nazari Siahsar et al. [35] introduced a low-rank 

and sparse decomposition scheme for seismic data denoising in 

the transform domain. This method starts by transforming the seis- 

mic trace into the sparse domain using synchrosqueezing trans- 

form [36] . Then, the method is followed by low-rank and sparse ar- 

ray decomposition based on the mixed norm optimization [37–39] . 

Matrix completion is another technique that is introduced for 3D 

seismic data interpolation by a rank-reduction formulation [3] . This 

patch-mapping method solves a nuclear-norm minimization prob- 

lem to restore the data. Furthermore, several fixed-basis sparsity- 

promoting transforms have already been proposed in the literature 

for processing seismic data including the Fourier transform [40,41] , 

the Radon transform [42,43] , the high-order sparse radon trans- 

form [44] , the wavelet and curvelet transform [45,46] , the shear- 

let transform [47,48] , the seislet transform [49–52] and the EMD- 

seislet transform [53] . 

Recently, machine learning techniques are used to find (learn) 

a suitable transform domain which the data can be represented 

sparsely [54,55] . One such technique for this purpose is K-SVD 

[56] . Methods, in this case, assume that a clean data can be rep- 

resented as a sparse linear combination of the atoms in an over- 

complete dictionary instead of a predefined analytical one (e.g., 

wavelets). Therefore, the noise of the corrupted data can be re- 

duced by approximating the clean data using the mentioned atoms 

[57–59] . Simultaneous denoising and interpolation using learning 

based approach was first proposed for image restoration by [60,61] . 

Unfortunately, it is not easy to find suitable fixed dictionaries that 

enable us to model the complex local structures of the data, hence, 

data-driven dictionary learning methods are introduced that allow 

us to capture the morphology of the noisy data itself [62,63] . Gen- 

erally, there are two approaches to find dictionaries: (i) using a 

clean data as training samples to reconstruct another test image 

[64] ; (ii) using noisy data itself as training samples and adapted 

the method to reconstruct the data [65] . In the former case, it is 

difficult to find a proper clean data, which help to reconstruction, 

so, using noisy data itself (i.e. second approach), can be a better 

solution in dictionary learning. 

Due to their meaningful geometric repetitive structures, such as 

events and dips, seismic data are intrinsically low-rank in the time- 

space domain [3,35] . On the other hand, noise and missing traces 

increase the rank of the noisy data [1,3,31,35] . Therefore, assum- 

ing a learned dictionary, the clean data, unlike noise and missing 

traces, can be modeled as a linear combination of a few elements 

from the dictionary. The learning-based approaches also used to 

update and infer the dictionaries for seismic data processing [66–

68] . Cai et al. [69] proposed a data-driven tight frame (DDTF) based 

dictionary learning algorithm for image restoration that is faster 

than the traditional K-SVD based approach, which was then ap- 

plied to seismic data restoration by Liang et al. [66] . Zhu et al. 

[70] and Chen et al. [4] combined the dictionary learning based 

sparse transform with the fixed-basis transform, which is called 

double-sparsity dictionary, to better adapt to seismic data. In dou- 

ble sparsity [71] , the base dictionary is not sparse, such as DCT or 

wavelets, etc., only the adaptive layer is sparse. Recently, Zhu et al. 

[72] introduced a joint seismic data denoising and interpolation 

using a masking strategy in the sparse representation of the dictio- 

nary. Chen [67] applied a new dictionary learning algorithm based 

on the sequential generalized K-means (SGK) to seismic noise at- 

tenuation that is faster than its alternative: the K-SVD algorithm. 

In [73] , Bekouche and Ma introduced a patch-based data-driven 

dictionary learning algorithm with sparse coding to attenuate ran- 

dom noise in 2D seismic data. In order to decrease the time cost 

of their algorithm, they picked a limited number of patches ran- 

domly from the whole data to learn a dictionary. Therefore, as a 

drawback, it can be considered that the method did not use whole 

data information to learn a dictionary and therefore the learned 

dictionary does not contain all information about the data. In this 

work, we will increase the quality of the seismic data to tackle the 

mentioned drawback by using whole data information to learn a 

dictionary. 

In this paper, we introduce a simultaneous denoising and in- 

terpolation algorithm for 2D seismic data which relies on a parts- 

based data-driven non-negative dictionary learning (DNDL) algo- 

rithm with sparsity and smoothness constraints. Our proposed 

method takes the signal characteristics into account and does not 

require prior knowledge. The atoms of the dictionary in this al- 

gorithm are generated based on a special case of versatile non- 

negative matrix factorization (VNMF) [74] . The VNMF model intro- 

duces a sparsity-promoting dictionary learning minimization prob- 

lem with smoothness constraint, which combines dictionary learn- 

ing and sparse coding [75] . The sparsity-inducing norm minimiza- 

tion can help us to improve the noise reduction ability of the al- 

gorithm. Furthermore, there is a relation between non-negativity 

and sparsity constraints in which non-negativity can induce spar- 

sity [76,77] . Also, by applying the non-negativity constraints to dic- 

tionary and coefficients matrices, VNMF can learn the data part 

by part [77] . In fact, VNMF can approximate the data using only 

an additive combination of multiple basis (with no subtractions). 

Since, in dictionary learning algorithms, one seeks to find atoms of 

the data, the parts-based feature can be helpful to obtain the parts 

(atoms) of the data. In addition to scaling each atom in the dic- 

tionary, the smoothness constraint can be useful for interpolation 

by smoothing the data. It has been proven that using both L1 and 

L2 norms constraints on atoms can remove correlated variables, si- 

multaneously [74] . 

In general, seven merits of using this method are described as 

follows (our contributions in this paper are marked by ∗): 

(1) Working with data in time-space domain. 

(2 ∗) VNMF combines dictionary learning and sparse coding, that 

finds the basis of low-dimensional space from noisy data it- 

self (data-driven feature). 

(3 ∗) Utilizing L1 and L2 norms constraints on dictionary matrix 

to (i) achieve sparser representation, and (ii) obtain more ef- 

ficient interpolation. 

(4 ∗) Using non-negativity constraint to induce sparsity on trans- 

form domain in seismic data and reduce the solution space. 
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