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a b s t r a c t 

In this paper, we focus on the problem of joint direction-of-arrival (DOA) estimation and source number 

detection for an array of sensors. We propose a CLEAN-based sequential algorithm that uses a sequential 

hypothesis testing procedure. This method can be employed for any array with an arbitrary geometry. 

We also manage to reduce the computational complexity of the proposed method. Additionally, we de- 

rive an analytical performance bound for the source number detection algorithm. Our simulation results 

show that the proposed method achieves an appropriate performance even for low SNR or small num- 

ber of snapshots. It is shown that the proposed method is applicable to both correlated and uncorrelated 

sources. Unlike popular methods, the algorithm does not require to know the number of sources for the 

DOA estimation and is able to estimate the number and the DOA of sources jointly. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Array signal processing has applications in areas such as 

radar, sonar, wireless communication, radio astronomy, seismology, 

acoustics, and medical imaging [1,2] . Two of the most important 

problems in the array signal processing are the direction-of-arrival 

(DOA) estimation and source number detection. Due to the cost, 

available space and system performance in practical scenarios, it 

tends to be unsuitable to restrict the array geometry to a certain 

class. Therefore, the methods that can be applied to arbitrary array 

geometries are in great demand [3,4] . 

For the DOA estimation problem, the multiple signal classifi- 

cation (MUSIC) algorithm [5] is one of the well-known subspace- 

based methods. This algorithm can be applied to any type of array 

geometry. A version of this algorithm, which is referred to as root- 

MUSIC, utilizes polynomial rooting [6] . However, this method is 

only applicable to the uniform linear array (ULA). In [7] a method 

is presented to extend the application of the root-MUSIC to the 

nonuniform linear array case. Fourier-domain root-MUSIC is an- 

other method which develops the root-MUSIC algorithm for DOA 

estimation in the sensor arrays of an arbitrary geometry [8] . An- 

other popular technique for DOA estimation is the estimation of 

signal parameters via rotational invariance techniques (ESPRIT) [9] . 

In the ESPRIT method, the array geometry is required to be shift 
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invariant which limits the application of this method to a certain 

class of arrays. Array interpolation is a DOA estimation technique 

employed for nonuniform arrays [10–12] . This method involves ap- 

plying transformation to the received signal in order to obtain an 

interpolation of the signal over a virtual ULA. Manifold separation 

technique [13] models the received waveform by means of an or- 

thogonal expansion and approximates the true array steering vec- 

tor as the product of a matrix that depends only on the array pa- 

rameters and a Vandermond vector which depends merely on the 

angle of arrival. 

Some other DOA estimation methods are based on a technique 

called CLEAN [14] . CLEAN is developed initially for radio astron- 

omy. The main idea of CLEAN is to remove the strongest signals 

from the observed data successively. In [15] , a simple version of 

CLEAN method is applied to the DOA estimation problem. In this 

simple version, the cancellation of signal components is not per- 

fect and as a result, the performance of DOA estimation degrades. 

In [3] , a method is proposed for DOA estimation in nonuniform 

linear arrays. This method is a combination of CLEAN, Root-MUSIC 

and Toeplitz Completion techniques. However, this method needs 

an initial estimate of DOA of sources and the number of sources 

must be known. 

A popular sequential search technique for finding a sparse so- 

lution is orthogonal matching pursuit (OMP) [16] . This method can 

be utilized for DOA estimation. 

Source signals are correlated on condition that multipath reflec- 

tions are present. When the source signals are correlated, the sig- 

nal covariance matrix may become rank-deficient and many of the 
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mentioned methods fail to find the source DOA [3] . Certain meth- 

ods such as forward-backward spatial smoothing (FBSS) [18] can be 

used to improve the rank. The FBSS is one of the best methods to 

deal with the correlated sources, particularly when ULAs are con- 

sidered [3] . The disadvantage of this technique is that it uses the 

subarrays and therefore the resulting covariance matrix size is less 

than the original covariance matrix size. It must also be pointed 

out that the FBSS cannot be used directly for an array with an ar- 

bitrary geometry. 

Regarding the source number detection problem, the mini- 

mum description length (MDL) method [19] is one of the most 

successful methods. Another popular method is Akaike informa- 

tion criterion (AIC) [20] . These methods share common origins in 

the information-theoretic and Bayesian formulation of the general 

model selection problem [19] . The MDL and AIC are known to suf- 

fer in the detection performance for the small number of snap- 

shots. 

In this paper, we propose a CLEAN-based algorithm by solving a 

sequential generalized likelihood ratio test (GLRT) to estimate both 

DOA and the number of sources. This method can be used for ar- 

rays with an arbitrary geometry. Moreover, we reduce the compu- 

tational complexity of the proposed method. An analytical perfor- 

mance bound for source number detection is also derived. It has 

been illustrated that the proposed technique has an appropriate 

performance in the case of small snapshots for two closely spaced 

targets. The proposed method is applicable to both correlated and 

uncorrelated sources. It is noteworthy that the proposed method is 

a CLEAN-based algorithm that is developed through an statistical 

approach by solving a sequential generalized likelihood ratio test. 

It is also worth mentioning that although some versions of CLEAN 

exist in the literature, there appear to be very few statistical stud- 

ies about this method [15] . To the best of our knowledge, no other 

method in the literature looks at the CLEAN algorithm from the 

GLRT point of view. 

The remainder of this paper is organized as follows. 

Section 2 describes the signal model. The proposed method for the 

joint DOA estimation and source number detection is presented 

in Section 3 . Section 4 is presented to reduce the computational 

complexity of the proposed method. The performance bound of 

the proposed source number detection algorithm, is analyzed in 

Section 5 . Simulation results, presented in Section 6 , explore the 

validation of the theoretical results. Finally, Section 7 concludes 

the paper. 

Notation: Matrices are denoted by the upper boldface letters 

and vectors by the lower boldface letters. | x | shows the absolute 

value of x and ‖ x ‖ stands for the Euclidean norm. The superscript 
H denotes the Hermitian of a matrix or a vector. Pr (·) stands for 

the probability. Furthermore, we use the notation C N ( μ, C ) to in- 

dicate the complex normal distribution with the mean μ and the 

covariance matrix C . Finally, I is the identity matrix. 

2. The signal model 

Consider an array of M omnidirectional sensors with nonuni- 

form spacing in the xy plane. Assume that this array receives sig- 

nals from L ( L < M ) narrowband far-field sources with the un- 

known DOAs, θ � [ θ1 , . . . , θL ] 
T . We intend to estimate the number 

of sources and their DOAs. The M × 1 array output vector at the 

n th snapshot can be modeled as [1] : 

x (n ) = A L ( θ) s L (n ) + w (n ) , (1) 

where θ = [ θ1 , . . . , θL ] 
T is the L × 1 vector of signal DOAs. 

A L ( θ) � [ a (θ1 ) , . . . , a (θL )] is the M × L signal steering matrix and 

a (θi ) | i =1 , ... ,L is the M × 1 steering vector of the i th source which 

can be expressed as 

a (θi ) = 

[ 
exp 

(
j 
2 π

λ
(x 1 sin θi + y 1 cos θi ) 

)
, . . . , 

×exp 

(
j 
2 π

λ
(x M 

sin θi + y M 

cos θi ) 
)] 

, i = 1 , . . . , L, (2) 

where λ is the wavelength of the signal and { x m 

, y m 

} | m =1 , ... ,M 

are 

the coordinates of the m th array sensor. s L (n ) � [ s 1 (n ) , . . . , s L (n )] T 

is the L × 1 vector of the signal waveforms and w (n ) � 

[ w 1 (n ) , . . . , w M 

(n )] T is the M × 1 vector of the complex Gaussian 

sensor noises with the zero mean and covariance matrix σ 2 I . Here- 

after, for simplicity, we show A L ( θ) by A L and a ( θ i ) by a i . 

3. The proposed method 

In order to estimate the number of sources, we propose a se- 

quential algorithm which results from the solution of a sequential 

composite hypothesis testing problem. Solving this problem at the 

� th stage will determine whether there is a source in the direc- 

tion of θ� or not. The presence or absence of this source must be 

determined in the presence of the other sources in the unknown 

direction of θ1 , θ2 , . . . , θ� −1 . The hypothesis testing problem at the 

� th stage can be modeled as ⎧ ⎪ ⎨ 

⎪ ⎩ 

H 

(� ) 
0 

: x (n ) = A � −1 s � −1 (n ) + w (n ) , n = 1 , . . . , N;
� = 1 , . . . , L 

H 

(� ) 
1 

: x (n ) = A � −1 s � −1 (n ) + a � s � (n ) + w (n ) , n = 1 , . . . , N;
� = 1 , . . . , L, 

(3) 

where A � −1 is the M × (� − 1) steering matrix of � − 1 sources; 

more explicitly, 

A � −1 � [ a 1 , . . . , a � −1 ] . (4) 

s � −1 (n ) � [ s 1 (n ) , . . . , s � −1 (n )] T is the (� − 1) × 1 vector of the sig- 

nal waveforms and s � ( n ) is the scalar signal of the � th source. This 

is a composite hypothesis problem with the unknown parameters 

θ i and s i ( n ) for i = 1 , . . . , � . The noise variance is assumed to be 

known. We employ the GLR test to solve the composite hypothesis 

problem. The details of the derivation of this GLR-based detector is 

presented in Appendix A . The likelihood ratio is 

L � (x ) = max 
θ

N ∑ 

n =1 

| a H (θ ) P 

⊥ 
� −1 x (n ) | 2 

a H (θ ) P 

⊥ 
� −1 

a (θ ) 
= 

N ∑ 

n =1 

| a � H P 

⊥ 
� −1 x (n ) | 2 

a � H P 

⊥ 
� −1 

a � 

H 

(� ) 
1 

≷ 

H 

(� ) 
0 

η� , 

(5) 

where η� is the � th stage threshold which is determined based on 

the � th stage false alarm probability, a � is the M × 1 steering vector 

corresponding to the estimated direction θ� , and P 

⊥ 
� −1 

is a matrix 

that is orthogonal to the A � −1 , and is given by 

P 

⊥ 
� −1 = 

{
I − A � −1 

(
A 

H 
� −1 A � −1 

)−1 
A 

H 
� −1 � > 1 

I � = 1 , 
(6) 

and as a result L 1 (x ) = 

∑ N 
n =1 

| a 1 H x (n ) | 2 
M 

. Using (5) , our CLEAN-based 

algorithm for joint DOA estimation and source enumeration can be 

summarized as follows: 

Step 1 Compute L 1 (x ) , and then compare it with the predeter- 

mined threshold value, η1 . If this value is not greater than 

the threshold value, stop the algorithm and L = 0 . Other- 

wise ˆ θ1 = arg max θ
∑ N 

n =1 
| a H (θ ) x (n ) | 2 

M 

and go to the step 2. 

Step 2 For k = 2 , 3 , . . . , perform the following procedure: 

1) Define A k −1 as A k −1 � 

[
a 1 , . . . , a k −1 

]
. Where a k −1 is the 

steering vector in the direction of ˆ θk −1 . 

2) Compute P 

⊥ 
k −1 

for A k −1 using (6) and then calculate 

L k (x ) from (5) . 
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