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a b s t r a c t 

In this paper, we address the problem of direction-of-arrival (DOA) estimation using sparse represen- 

tation. As the performance of on-grid DOA estimation methods will degrade when the unknown DOAs 

are not on the angular grids, we consider the off-grid model via Taylor series expansion, but dictionary 

mismatch is introduced. The resulting problem is nonconvex with respect to the sparse signal and per- 

turbation matrix. We develop a novel objective function regularized by the nonconvex sparsity-inducing 

penalty for off-grid DOA estimation, which is jointly convex with respect to the sparse signal and pertur- 

bation matrix. Then alternating minimization is applied to tackle this joint sparse representation of the 

signal recovery and perturbation matrix. Numerical examples are conducted to verify the effectiveness of 

the proposed method, which achieves more accurate DOA estimation performance and faster implemen- 

tation than the conventional sparsity-aware and state-of-the-art off-grid schemes. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Direction-of-arrival (DOA) estimation has been extensively stud- 

ied over the past few decades because of its fundamental role 

in many signal processing areas ranging from multiple-input 

multiple-output radar, mobile and wireless communications, chan- 

nel estimation and sonar to acoustic tracking [1–3] . 

Recently, sparse representation has attracted increasing inter- 

est in statistical signal analysis and parameter estimation. In [4] , 

the concept of sparse representation is extended to address the 

problem of DOA estimation problem and � 1 -SVD algorithm is pro- 

posed to reduce the dimension of observations via singular value 

decomposition (SVD), which can achieve super-resolution perfor- 

mance. A reweighted � 1 norm penalty algorithm [5] exploits the 

coefficients of the reduced dimension Capon spatial spectrum in 

constructing the weight matrix to enforce the sparsity of solution, 

which involves a high computational burden. The methods men- 

tioned above have shown improvements in DOA estimation, but 

most of them are based on on-grid DOA � 1 norm constrained min- 

imization. Since in practice the unknown DOAs are not always ex- 
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actly on the sampling grids, their DOA estimation performance will 

degrade due to errors caused by the mismatches. 

To circumvent this issue, off-grid DOA estimation methods have 

been developed [6–12] . In [6] , a gridless sparse approach via 

reweighted atomic norm minimization is proposed for off-grid 

DOA estimation. In [7,8] , alternating minimization is exploited to 

solve for sparse signal and dictionary mismatch simultaneously, 

but it suffers from slow convergence. A noise subspace fitting- 

based off-grid DOA estimation method is derived in [9] using 

second-order Taylor approximation to achieve higher modeling ac- 

curacy. In [10] , an analytical performance bound on joint sparse 

recovery is given and a fast iterative shrinkage-threshold algorithm 

is implemented to tackle joint sparse recovery with structured dic- 

tionary mismatches. In [11] , co-prime arrays are considered to in- 

crease degrees of freedom for the grid mismatch and sample co- 

variance matrix is utilized to reduce the effect of noise variance. 

In [12] , a computationally efficient root sparse Bayesian learning 

(RSBL) method is proposed to eliminate the modeling error when 

using coarse grid. 

Compared with the convex function regularized by least squares 

problem, it has been demonstrated that utilizing nonconvex 

functions, such as smoothed � 0 quasi-norm [13] , � p quasi-norm 

[14] and weak convexity [15] , can achieve better sparse signal 

recovery. In this paper, we develop a novel objective function 

regularized by the nonconvex sparsity-inducing penalty for off- 

grid DOA estimation. Our motivation is twofold: (i) to overcome 
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the limitation of the conventional sparsity-based DOA estimation 

methods that the unknown angles belong to predefined discrete 

angular grids; and (ii) a proper nonconvex regularization is able to 

achieve better performance compared with convex relaxation em- 

ploying the � 1 norm function. In this study, we first introduce the 

off-grid model into DOA estimation via first-order Taylor series ex- 

pansion, which is equivalent to the dictionary mismatch, and then 

devise an objective function regularized by the nonconvex sparsity- 

inducing penalty with the least absolute shrinkage and selection 

operator (LASSO) [16] . The resulting objective function is jointly 

convex with respect to the sparse signal and perturbation ma- 

trix. We follow the rationale of alternating minimization to obtain 

the sparse signal by alternating direction method of multipliers 

(ADMM) [17] with incorporating the proximity operator for a fixed 

perturbation matrix, then update perturbation matrix via fixing the 

sparse signal and so on. Our results demonstrate that the proposed 

method outperforms the conventional sparsity-aware and state-of- 

the-art off-grid schemes. 

The rest of this paper is organized as follows. In Section 2 , the 

problem of DOA estimation using sparse representation is formu- 

lated. Section 3 introduces the off-grid model and presents our 

DOA estimation method. In Section 4 , numerical examples are con- 

ducted to evaluate the performance of the proposed algorithm. 

Section 5 concludes this paper. 

Notation : Lowercase bold-face and uppercase bold-face letters 

represent vectors and matrices, respectively. ( ·) † , ( ·) T and ( ·) H are 

pseudo-inverse, transpose and conjugate transpose operators, re- 

spectively. vec( ·) denotes the vectorization operator which stacks 

a matrix column by column. diag( ·) is a diagonal matrix composed 

of the elements of a column vector. � denotes the Kronecker prod- 

uct operator. || ·|| 1 , || ·|| 2 and || ·|| F denote the � 1 norm, � 2 norm and 

Frobenious norm, respectively. � and � take the real and imagi- 

nary parts of a complex variable, respectively. I K denotes the K ×
K identity matrix. 

2. Problem statement 

2.1. Signal model 

Consider a uniform linear array (ULA) equipped with M sensors. 

The inter-element spacing is half-wavelength. The origin is set at 

the middle point of the ULA. Assume that K narrowband signals 

from the far-field impinge onto the ULA from unknown and dis- 

tinct angles of θ1 , . . . , θK . The ULA response at the k th target can 

be expressed as 

a (θk ) = [ e − jπ (M−1) 
2 cos (θk ) , . . . , e jπ

(M−1) 
2 cos (θk ) ] T (1) 

The M × 1 observation vector is: 

y t = A (θ ) s t + n t , t = 1 , . . . , T (2) 

where y t = [ y 1 (t) , ..., y M 

(t)] T , A (θ ) = [ a (θ1 ) , . . . , a (θK )] is the ar- 

ray steering matrix, s t = [ s 1 (t) , . . . , s K (t)] T contains the source sig- 

nal amplitudes, n t = [ n 1 (t) , . . . , n M 

(t)] T is the complex indepen- 

dent white Gaussian noise vector with zero mean and covariance 

σ 2 I M 

. Here, T is the number of snapshots, and y m 

( t ) and n m 

( t ), 

m = 1 , . . . , M, are the output and measurement noise of the m th 

sensor at time t , respectively. 

Collecting the T snapshots, the matrix form of (2) can be for- 

mulated as a multiple measurement vectors (MMV) model, given 

by 

Y = A (θ ) S + N (3) 

where Y = [ y 1 , . . . , y T ] ∈ C 

M×T , S = [ s 1 , . . . , s T ] ∈ C 

K×T and N = 

[ n 1 , . . . , n T ] ∈ C 

M×T . 

In our study, we assume that K is known a priori and employ 

the M × K measurement matrix Y sv by thresholding the K largest 

singular values of the M × T measurement matrix Y to reduce 

computational complexity in directly processing (3) , which is anal- 

ogous to the � 1 -SVD algorithm [4] . In summary, the problem of 

DOA estimation in sparse representation framework is to find the 

unknown DOAs given K , Y sv and the mapping θ → A ( θ). 

2.2. DOA estimation in sparse representation framework 

Let the set � = { ̂  θ1 , . . . , 
ˆ θN } be the discretized sampling grids of 

all potential directions in the admissible DOA range [0, π ], where 

N is the number of grid points and typically N � M > K . When 

the true DOAs are located at (or close to) the sampling grids, the 

typical DOA estimation model based on the sparse representation 

framework is linear: 

Y sv = A ( ̂  θ ) ̂ S + 

ˆ N (4) 

where ˆ S ∈ C 

N×K is the sparse signal matrix and A ( ̂  θ ) = 

[ a ( ̂  θ1 ) , . . . , a ( ̂  θN )] ∈ C 

M×N . The K rows in 

ˆ S with largest mag- 

nitudes are identical to those of S , and the remaining N − K rows 

in 

ˆ S are regarded as zero. In compressed sensing theory, the main 

task in (4) is to recover ˆ S from the underdetermined system, and 

DOA estimation is equivalent to finding the positions of K nonzero 

rows in 

ˆ S . The sparse signal recovery can be formulated as the � 0 
norm constrained minimization problem: 

(� 0 ) : min 

ˆ S 

‖ ̂

 S ‖ row, 0 s.t. Y sv = A ( ̂  θ ) ̂ S + 

ˆ N (5) 

where || ·|| row, 0 counts the nonzero rows. 

Since � 0 norm function is highly discontinuous and nonconvex, 

solving the � 0 norm constrained minimization problem is known to 

be NP-hard in general. To address this issue, the � 1 norm, which is 

the closest convex norm to the � 0 norm, is employed instead. Then 

the sparse signal recovery problem under the � 1 norm function is: 

(� 1 ) : min 

ˆ S 

‖ ̂  s � 2 ‖ 1 s.t. ‖ Y sv − A ( ̂  θ ) ̂ S ‖ 

2 
F ≤ η (6) 

where η is an upper-bound on the noise power, and ˆ s � 2 is a func- 

tion of ˆ S whose the i th element equals the Frobenius norm of the 

i th row of ˆ S , i.e., [ ̂ s � 2 ] i = ‖ ̂  S (i, :) ‖ 2 . Numerical methods [4,18] have 

been presented for (6) . However, larger coefficients are penalized 

more heavily in � 1 norm than smaller coefficients, which results to 

that the sparsest solution of � 1 norm penalty does not approximate 

the � 0 norm penalty. Nevertheless, reweighted � 1 norm minimiza- 

tion algorithms are designed to tackle this imbalance in (6) : 

( W � 1 ) : min 

ˆ S 

‖ W ( ̂ s ) � 2 ‖ 1 s.t. ‖ Y sv − A ( ̂  θ ) ̂ S ‖ 

2 
F ≤ η (7) 

where W is a weighting matrix and has different forms according 

to different optimization criteria [19,20] . 

To this end, there are two main drawbacks of the DOA esti- 

mation methods based on � 1 norm minimization: (i) they recover 

the DOAs only if the targets exactly correspond to the discretized 

sampling grids. However, the target positions are not precisely on 

the grids in practical scenarios and thus DOA estimation bias ex- 

ists. Moreover, most conventional sparsity-based DOA estimation 

methods tackle this problem by using dense sampling grids, which 

lead to high computational complexity and the estimated DOAs 

are still constrained on the grids; (ii) they apply toolbox to calcu- 

late the � 1 norm constrained minimization problem, such as CVX 

[21] and Sedumi [22] , which cannot tackle the nonconvex opti- 

mization problem and is time-consuming, especially for large data 

size. 
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