
Rapid accurate frequency estimation of multiple resolved exponentials
in noise

Shanglin Ye n, Elias Aboutanios
School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney NSW 2052, Australia

a r t i c l e i n f o

Article history:
Received 2 May 2016
Received in revised form
8 September 2016
Accepted 12 September 2016
Available online 13 September 2016

Keywords:
Frequency estimation
Resolved exponentials
Interpolation algorithm
Fourier coefficient
Leakage subtraction

a b s t r a c t

The estimation of the frequencies of the sum of multiple resolved exponentials in noise is an important
problem due to its application in diverse areas from engineering to chemistry. Yet to date, no low cost
Fourier-based algorithm has been successful at obtaining unbiased estimates that achieve the Cramér–
Rao lower bound (CRLB) over a wide range of signal-to-noise ratios. In this work, we achieve precisely
this goal, proposing a fast yet accurate estimator that combines an iterative frequency-domain inter-
polation step with a leakage subtraction scheme. By analysing the asymptotic performance and the
convergence behaviour of the estimator, we show that the estimate of each frequency converges to the
asymptotic fixed point. Thus, the estimator is asymptotically unbiased and the variance is extremely
close to the CRLB. We verify the theoretical analysis by extensive simulations, and demonstrate that the
proposed algorithm is capable of obtaining more accurate estimates than state-of-the-art high resolution
methods while requiring significantly less computational effort.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Estimating the frequencies of the components in sums of com-
plex exponentials in noise is an important research problem as it
arises in many applications such as radar, wireless communications
and spectroscopy analysis [1–5]. The signal model given by
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Here N is the number of time samples. L is the number of compo-
nents. ∈ [ − ]f 0.5, 0.5l is the normalised frequency of the lth
component. The noise terms w(n) are additive Gaussian noise with
zero mean and variance s2. The signal to noise ratio (SNR) of the lth
component is ρ σ= | |A /l l

2 2.
In this work, we assume that the components are resolved and

the goal is to estimate their frequencies cheaply yet accurately. The
estimation is achieved by assuming L to be known a priori. The
estimation of L is beyond the scope of this paper as it is widely
considered as a separate problem [6–9]. Nevertheless, in the case
where estimating L is necessary, model order determination
methods such as the Akaike information criterion (AIC) [10] and the
minimum description length (MDL) [11] can be used. Particularly,
when ⪡L N , the degrees of freedom employed in these methods can
be much less than ⌊ ⌋N/3 resulting in a significantly reduced

computational cost of the model order determination step [12].
The estimation of the frequencies of multi-tone exponentials

has been the subject of intense research for many decades. The
various algorithms that have been proposed to handle it, [13,14],
can be categorised into two types: non-parametric estimators and
parametric estimators.

Non-parametric spectral estimators, including the traditional
Capon [15], APES [16] and IAA [17] can be used to estimate the
component frequencies using peak picking on the spectral esti-
mates without knowing the number of components. These algo-
rithms exhibit a high resolution, meaning that they can resolve
closely separated components, by consuming ( + )O N K Klog2

2 for
the computation of a length-K spectrum [18–20]. However, they
obtain accurate estimates at the expense of very high computa-
tional cost as the peak picking needs to be performed in a very
dense spectrum grid where ⪢K N . Consequently, the high compu-
tational burden makes them poor approaches for resolved com-
ponents where the computational cost to achieve the CRLB can
become prohibitive.

Instead of estimating the signal spectrum, parametric estima-
tors try to find accurate estimates of the signal parameters only.
They can be further classified into time and frequency domain
approaches. The time domain approaches include subspace
methods such as matrix pencil (MP) [21] and ESPRIT [22,23],
which use the singular value decomposition (SVD) to separate the
noisy signal into pure signal and noise subspaces, or iterative
optimisation algorithms including IQML [24] and weighted least

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

http://dx.doi.org/10.1016/j.sigpro.2016.09.010
0165-1684/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: shanglin.ye@unsw.edu.au (S. Ye).

Signal Processing 132 (2017) 29–39

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2016.09.010
http://dx.doi.org/10.1016/j.sigpro.2016.09.010
http://dx.doi.org/10.1016/j.sigpro.2016.09.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.09.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.09.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.09.010&domain=pdf
mailto:shanglin.ye@unsw.edu.au
http://dx.doi.org/10.1016/j.sigpro.2016.09.010


squares (WLS) [25,26] that minimise the error between the noisy
and pure signals subject to different constraints. However, similar
to non-parametric estimators, they suffer from high computational
cost due to the SVD operation, matrix inversion and/or the ei-
genvalue decomposition involved, which require ( )O N3 for com-
putation for large N. In [5], the author proposed a computationally
efficient ML-based algorithm that is of smaller computational
complexity by exploiting the Vandermonde structure of the signal
mode. Nevertheless, relatively heavy calculations are still required
to achieve high accuracy when the number of components is large
compared with the signal length. In frequency-domain parametric
estimators, on the other hand, are generally computationally more
efficient than time-domain methods. These include the traditional
CLEAN approach [27] and the RELAX algorithm [7], which combine
the maximiser of the discrete periodogram and an iterative esti-
mation–subtraction procedure. But their estimation error is of the
same order as the reciprocal of the size of the discrete period-
ogram [28], which make them biased when a sparse spectrum is
calculated, or computationally complex for obtaining a dense
spectrum. A number of algorithms have been proposed in [29–32]
to refine the maximiser of the N-point periodogram. But, as these
are developed for single-tone signals, they perform poorly in the
multiple component case due to the bias resulting from the in-
terference of the components with one another. Much work,
[1,33,6,3,4], has been done to reduce the effect of the interference
by either applying the interpolators after pre-multiplying the
signal by a time domain window. However, non-rectangular win-
dows lead to deterioration of estimation accuracy.

To summarise, there has not been to date any successful algo-
rithm that is capable of achieving unbiased estimates close to the
CRLB while at the same time maintaining high computational ef-
ficiency. In this paper, we solve this problem by proposing a novel
parametric estimation algorithm that operates in the frequency
domain and achieves excellent performance. The new approach is
more computationally efficient than the non-parametric and time
domain parametric estimators, yet it outperforms them in terms of
estimation accuracy.

The rest of the paper is organised as follows. In Section 2, we
present the novel frequency estimation algorithm. We analyse the
algorithm in Section 3 and give its theoretical performance. In Section
4, we show simulation results by comparing the proposed algorithm
with state-of-art parametric estimators and the Cramér–Rao lower
bound (CRLB). Finally, some conclusions are drawn in Section 5.

2. The proposed method

Let λ̂ denote the estimate of the parameter λ. The A&M esti-
mator of [30,28] is a powerful and efficient algorithm for the es-
timation of the frequency of a single-tone signal. It uses a two
stage strategy, obtaining first a coarse estimate from the maximum
of the N-point periodogram

∑^ = ( ) = ( )
( )

π

=

−
−m X k x n eargmax argmax .

2k k n

N
j

N
kn2

0

1
2

2

In the noiseless case, we have ^ =→∞m mlimN , a.s. [30]. When m̂ is
the true maximum bin, the frequency of the signal can be written
as
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where δ ∈ [ − ]0.5, 0.5 is the frequency residual. The A&M algo-
rithm then refines the coarse estimate by interpolating on Fourier
coefficients to obtain an estimate for the residual δ.

Let ±X 0.5 be the Fourier coefficients at locations ^ ±m 0.5. In the
noiseless case, these are given by
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where h is the interpolation function

=
+
− ( )

−

−
h

X X
X X

1
2

.
6

0.5 0.5

0.5 0.5

From ^−
z

1
, estimates of δ and consequently of the frequency f be-

come

Iδ
π

δ^ = − ^ ^ =
^ + ^

( )

−

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

N
z f

m
N2

ln , and .
7

1

Here I{•} denotes the imaginary part of •. The key to the A&M
algorithm compared to other interpolators like those of [34] is that
it can be implemented iteratively in order to improve the estimation
accuracy [30]. In each iteration the estimator removes the previous
estimate of the residual before re-calculating Fourier coefficients
and re-interpolating. It was shown in [30] that two iterations are
sufficient for the estimator to obtain asymptotically unbiased fre-
quency estimate with the variance only 1.0147 times the CRLB.

Now turning to the multi-tone case, that is ≥L 2, let { ^ } =ml l
L

1 be

the estimates of the maximum bins. Also let δ̂p be the estimates of
the residuals from the previous iteration. The Fourier coefficients
of the pth component at locations δ( ^ + ^ ± )m 0.5p p are
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where ±Sp, 0.5 are Fourier coefficients for a single exponential sp(n)
as per Eq. (4). ±Wp, 0.5 are the corresponding noise terms at the
interpolation locations. ±Sl, 0.5 is the leakage term introduced by the
lth component:
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As proposed in [1,35], the leakage terms can be attenuated by
applying a window to the signal. Although this reduces the bias it
also leads to a broadening of the main lobe and comes at the cost
of an increase in the estimation variance. We, on the other hand,
address this problem by estimating the leakage terms in Eq. (10)
and removing them in order to obtain the expected coefficients of
a single exponential. We then apply the A&M estimator to esti-
mate the frequency. It is clear from Eq. (10) that this necessitates
the parameters δl and Al be known or at least estimates for them
should be available. In what follows, we construct a procedure to
achieve this.

Let us start by assuming that we have estimates { }δ̂ ^
= ≠

A,l l
l l p

L
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Then the total leakage term can be obtained as
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