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A B S T R A C T

In this paper we provide a formal justification of the use of time–frequency reassignment techniques on time–
frequency transforms of discrete time signals. State of the art techniques indeed rely on formulae established in
the continuous case which are applied, in a somehow inaccurate manner, to discrete time signals. Here, we
formally derive a general framework for discrete time reassignment. To illustrate its applicability and generality,
this framework is applied to a specific transform: the Constant-Q Transform.

1. Introduction

Time–frequency reassignment has received great attention over the
last decades, especially for the task of sinusoidal parameter estimation
in noisy data. Numerous methods have been developed based on
Fourier analysis [6,1,7], on subspace decomposition [32,33] or on
more general models such as AM/FM models [2,8]. Time–frequency
reassignment methods aim at providing enhanced time–frequency
representations with an improved resolution in both time and fre-
quency. To this end, these methods propose to assign the energy
computed at some time–frequency point in the signal to a different
point in the time–frequency plane that depends on the window used for
the spectral computation.

Time–frequency reassignment methods emerge from the idea first
proposed by Kodera [22]. This original approach uses the phase
information of the time–frequency representation and remains difficult
to use in practice. Later on, Auger and Flandrin [6] proposed a new
closed-form solution to this problem which applies to a wide variety of
time–frequency representations and relies on much more straightfor-
ward computations of the reassigned indexes. This work has opened
the door to the use of time–frequency reassignment in numerous
domains such as physics [26], radar imaging [30] or audio [28]. It has
also led to the development of numerous extensions and adaptations of
the original method [21,5,27].

Another solution to the problem, named synchrosqueezing, has
been proposed by Daubechies and Maes in [13]. Notably because it
offers the ability to reconstruct the time signals, the technique has
drawn a lot of interest and has become the root of multiple applications
and enhancements [12,23,3]. Although synchrosqueezing was initially

presented as a distinct technique from Auger and Flandrin's reassign-
ment method, the strong connection that exists between the two has
been clarified in [4].

Traditionally, reassignment calculations are carried out in the
context of continuous time signals (see [18] for a review) while most
applications involve discrete time signals. In practice, all results
obtained in the continuous time case are applied, without detailed
justification, to the discrete case.

In this work, we propose a formal framework for the computation of
the reassigned transforms which fully takes into account the discrete
time aspect. Our approach consists of expressing the magnitude of the
time–frequency transform of a discrete signal as a mass function in the
time–frequency plane and in assigning the energy to the centre of mass
of this representation. Interestingly, the obtained mathematical ex-
pressions are very similar to the classical expressions proved in the
continuous time case. The main advantage of our approach is that we
obtain exact expressions of the solution when discrete signals are
considered. This opens the door to the implementation of exact
solutions and, should the implementation require an approximate
solution, we are able to characterise the introduced error. To some
extent, this work also gives a formal justification of the common
approximation made when applying continuous time formulae to
discrete time signals.

The paper is organised as follows. The mathematical model and the
derivations of closed-form expressions for reassigned time and fre-
quency indexes are provided in Section 2. We then discuss in the
subsequent section the merit of the proposed solution. An application
of the framework to a specific time–frequency representation, the
Constant Q Transform (CQT), is finally proposed in Section 4.
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2. Mathematical model

2.1. Traditional time–frequency representations

As stated in the introduction, our aim is to derive the mathematical
formulation of the reassigned time–frequency representation of a
discrete numerical signal.

We thus consider a discrete time signal x. Such a signal maps any
discrete index n ∈  to a complex value x ∈n  . Its frequency content
X ξ( ) is defined for any normalised frequency ξ ∈ /  by the Discrete
Time Fourier Transform (we use the standard notation /  to indicate
that the normalised frequency is defined modulo 1).

The information that one reads in a time–frequency representation
of x is the amount of energy in x at time t ∈  and normalised
frequency ν ∈ [0; 1]. In order to evaluate this energy, the scalar product
between x and a kernel is computed. The kernel consists of a window-
ing sequence ht ν, , centred on t, multiplied by the harmonic function of
frequency ν. Let us note that the t ν( , ) exponent makes it explicit that
the windowing sequence depends on the time of interest and may also
depend on the frequency of interest. More precisely, the transforms of x
that fall within the scope of this paper can be written in the following
form:

∑t ν h x( , ) = ex h

n
n
t ν

n
j πνn,

∈

, − 2t ν,




(1)

The time–frequency representation at time t and frequency ν is
finally obtained by considering the squared magnitude of the trans-
form:

s t ν t ν( , ) = | ( , ) | .x h, 2t ν, (2)

It is interesting here to recall the Heisenberg–Gabor limit [17] that
constrains the design of the windowing sequence ht ν, . More precisely,
the Gabor limit states that there is a trade-off between the temporal
and spectral resolutions when representing a signal in the time–
frequency plane. In practice, adjusting the support of the windowing
sequence is a direct way to tune this trade-off. A wide support will
result in a precise frequency resolution with a poor temporal resolu-
tion. Conversely, a narrow support will provide a good temporal
resolution at the cost of the frequency resolution. In order to ensure
consistency, we consider that the windowing sequences are of finite
support and that they are normalised by the size of their supports. For
instance, with h being a continuous window function of finite temporal
support, the windowing sequence is defined by h h n t= ( − )n

t ν, in the
case of a Short-Term Fourier Transform (STFT) or by
h νh ν n t= ( ( − ))n

t ν, in the case of a Constant-Q Transform (CQT) for a
set of frequencies ν within [0; ]1

2 (see Section 4 for more details).
In addition to constraining the design of the window, the choice of a

given time–frequency transform also determines the set of time–
frequency points t ν( , ) at which the representation is evaluated.
Typically, a Short-Time Fourier Transform with a temporal hop size
Δt and a spectral hop size Δν is obtained with the following set of
points: t kΔ ν k Δ k k{( + , + ′ ) for ( , ′) ∈ )}t ν0 0

2 . In contrast, the
Constant-Q Transform, whose spectral geometric progression is often

denoted by 2r
1
(r being the number of bins per octave), is obtained with

the set t kΔ ν k k{( + , 2 ) for ( , ′) ∈ }t
k

0 0
′ 2r

1
 . In these expressions, t0

naturally denotes the lowest time index of the representation and ν0
the lowest frequency bin.

Let us make explicit here that in the following derivations we will be
using the notation z for the complex conjugate of z and the symbol * for
the discrete convolution operator.

2.2. Time–frequency representations as mass functions

Reassignment techniques rely on the idea that time–frequency
representations, at a given point t ν( , ), can be written as the sum of a

mass function defined on the time–frequency plane n ξ( , ). Given our
context, which involves a discrete time axis and a periodic frequency
axis, we have n ξ( , ) ∈ × ( / )   . We thus look for an expression of the
form:

∫∑s t ν Φ n ξ dξ( , ) = ( , )
n ξ ν

ν
t ν

∈ = − 1
2

+ 1
2 ,

 (3)

where the function Φt ν, is real-valued.
Let us define W, a discrete version of Rihaczek's ambiguity function

[31], for any sequence φ ∈ ℓ ( )1  , time index n ∈  and frequency
ξ ∈ /  by:

∑W n ξ φ φ( , ) = e .φ
τ

n τ n
j πξτ

∈
+

− 2

 (4)

Proposition 1. The time–frequency representation s t ν( , ) of a
discrete time signal x ∈ ℓ ( )1  , as defined in Eq. (2), can be written
as the sum of a mass function, as in Eq. (3), with:

Φ n ξ W n ν ξ W n ξ( , ) = { ( , − ) ( , )}.t ν
h x

, t ν,R

Putting things together, this means that the time–frequency
representation of x at point t ν( , ) can be written in the following form:

∫∑s t ν W n ν ξ W n ξ dξ( , ) = { ( , − ) ( , ),}
n ξ ν

ν

h x
∈ = − 1

2

+ 1
2 t ν,R

 (5)

Proof. Let us evaluate the following expression:

∫∑E t ν W n ν ξ W n ξ dξ( , ) = ( , − ) ( , ) .
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

We have:
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Knowing that ht ν, is of finite support and that x is in ℓ ( )1  , Fubini's
theorem ensures that the summations can be permuted:
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Knowing that, for any integer k, we have:

∫ dξ ke = 1 if = 0
0 otherwiseξ ν

ν
j πξk

= − 1
2

+ 1
2 − 2 ⎪

⎪

⎧
⎨
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the above expression can be rewritten with respect to a single shift
variable τ:

∑E t ν h h x x( , ) = e .
n τ

n τ
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n
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By the substitution τ m n↦ − we get:
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Altogether, we have proved that:
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