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A B S T R A C T

Parameter estimation of a source of chemical, biological or radiological emissions is a problem of great
importance for public safety. The key parameters of interest are the source intensity and its location. This paper
applies the concept of Rao–Blackwell dimension reduction to solve the posterior probability distribution
function of source intensity, conditioned on source location, analytically. The paper is cast in the context of a
source of a hazardous release of particles or gas and its turbulent transport through the medium. Numerical
results, obtained by simulations and using an experimental dataset, demonstrate the statistical efficiency of the
proposed method.

1. Introduction

The threat of a hazardous chemical–biological–radiological (CBR)
attack, either in a form of a release of toxic biochemical aerosols into
the atmosphere or an improvised nuclear device, has been well
documented [1,2]. For the sake of public safety, it is very important
to rapidly detect and localise the CBR source so that the mitigation
actions can be carried out promptly. The problem of CBR source
localisation has been studied for quite some time. The standard
solutions are based on optimisation techniques, such as nonlinear least
squares [3,4] and maximum likelihood estimation [5]. These ap-
proaches can fail due to local minima or poor convergence and in
addition provide only point estimates without uncertainty attached to
it. The alternatives are the Bayesian techniques [6–12], which estimate
the posterior probability density function (PDF) of a source, thereby
providing an uncertainty measure to any point estimate derived from
it. Among the Bayesian techniques, Markov chain Monte Carlo
(MCMC) is the dominant method for estimation of the posterior
PDF, applied in [6,8–10]. Other approaches to posterior estimation
are numerical integration [7], importance sampling [11], and approx-
imate Bayesian computation [12].

In formulating the problem, one needs to specify the parameter
vector, the dispersion model and the measurement model. The para-
meter vector θ typically includes the source release rate or intensity,

Q ∈0
+, the position of the source r ∈ d

0 (d=2 or 3), and possibly
environmental parameters (e.g. the mean wind speed and canopy

characteristics). The dispersion or propagation model describes via
mathematical equations the mean concentration of an emitted bio-
chemical substance, or the mean radiation field, at a given sensor
location, as a function of the parameter vector θ. All dispersion/
propagation models used in practice are nonlinear with respect to the
source location r0, but linear with respect to intensity Q0. This linear
relationship is the key feature exploited in the paper. Finally, the
measurement model relates the mean concentration to sensor mea-
surements that are affected by stochastic fluctuations. The most
adequate model for this purpose has been experimentally found to be
the Poisson distribution – either in the context of measuring the count
of the radiated photons [13] or the count of dispersed biochemical
particles [14].

The source parameter estimation problem is approached in the
Bayesian framework. The main novelty of the paper, compared to the
earlier Bayesian approaches, is that it applies the concept of Rao–
Blackwell dimension reduction [15,16] to the problem. In doing so, we
derive the analytic expressions for: (a) the posterior PDF of source
intensity Q0 (conditioned on the source location) and (b) the likelihood
of the source location parameter (only). Numerical analysis, using both
simulated and experimental data, is carried out to demonstrate the
gains of the proposed, dimension reduced, estimation method. The
presentation of the paper, without loss of generality, will focus on a
hazardous biochemical substance release into the atmosphere, using an
open-field two-dimensional (d=2) dispersion model.
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2. Models and problem formulation

We adopt a dispersion model of turbulent transport through the
medium from [14], used in a number of recent publications [17–21].
Consider a source of particle release into the environment (atmosphere
and water), characterised by a constant emission rate Q > 00 and
located at x yr = ( , )0 0 0

⊤. The particles propagate through the medium
with the isotropic diffusivity D, but can also be advected by flow (due to
wind or current), whose mean direction and average speed V are
known. Let us adopt the convention that the mean flow (wind)
direction coincides with the direction of the x-axis. The average lifetime
of a particle (before being absorbed) is τ. A spherical sensor of small
size a at a location with coordinates x yr = ( , )⊤, non-coincidental with
the source location r0, will experience a series of encounters with the
released particles at the rate [14]:
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where K0 is the modified Bessel function of order zero and
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The rate of particle encounters R r( )θ is expressed in (1) as a function of
the (unknown) parameter vector θ Q r= [ , ]0 0

⊤⊤.
Suppose a network of S spatially distributed sensors is measuring

the concentration of emitted particles. The stochastic process of sensor
encounters with emitted particles is modelled by a Poisson distribu-
tion: the probability that ith sensor at location x yr = ( , )i i i

⊤ encounters
z ∈i

+ particles during a time interval t0 is then:
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where μ R tr= ( )θi i 0 is the mean concentration at ri and i S= 1,…, . All
sensors are assumed to be of the same (and known) size a. Because the
environmental parameters τ, D and V, are also known, (3) represents
the full specification of the likelihood function of θ, given a measure-
ment zi (taken at location ri). Assuming the sensor measurements,
conditioned on θ, are independent, the likelihood function of the
measurement vector z z zz = [ , ,…, ]S1 2

⊤ can be written as a product
θ z t Rz rℓ( | ) = ∏ ( ; ( ))θi

S
i i=1 0 .

The parameter estimation problem is formulated in the Bayesian
framework. The goal is to compute the posterior PDF θp z( | ), which
provides a complete probabilistic description of the information
contained in z about θ. To compute the posterior distribution, in
addition to θzℓ( | ) one needs to specify the prior distribution of the
parameter vector θπ ( ). Using Bayes' rule

∫
θ θ θ

θ θ θ
p π

π d
z z

z
( | ) = ℓ( | ) ( )

ℓ( | ) ( )
.

(4)

Quantities of interest related to θ (e.g., the posterior mean and
variance) can be computed from θp z( | ). Note that the prior θπ ( ) is
typically non-Gaussian: the source position is often restricted to
polygon regions, while Q0 is strictly positive. Optimal Bayesian
estimation is generally impossible because the posterior PDF cannot
be found in closed-form. This is certainly the case for the signal model
described above.

3. Rao–Blackwell dimension reduction

This section presents the key result: if the source intensity and its
location are independent, the posterior PDF of source intensity,
conditioned on the source location, can be calculated analytically.
Consequently, Monte Carlo estimation can be applied to a reduced

dimension of the parameter vector space.
Using the chain rule one can write the posterior PDF as follows:

θp p Q pz r z r z( | ) = ( | , ) ( | )0 0 0 (5)

Suppose for a moment that we can calculate the posterior p Q r z( | , )0 0
analytically. Then we need to apply a Monte Carlo estimation method
to compute only p r z( | )0 , which according to Bayes’ rule is given by:

∫
p g π

g π d
r z z r r

z r r r
( | ) = ( | ) ( )

( | ) ( )
.0

0 0

0 0 0 (6)

The problem with (6) is that the likelihood function g z r( | )0 is also
unknown – only θzℓ( | ) is known. Hence, in order to apply the Rao–
Blackwell dimension reduction, we need not only the analytic expres-
sion for p Q r z( | , )0 0 , but also for g z r( | )0 .

Due to the independence assumption between the source intensity
and its location, θπ π Q π r( ) = ( ) ( )0 0 . Let us assume the prior π Q( )0 is a
Gamma distribution with shape parameter η0 and scale parameter ϑ0,
that is

π Q Q η
Q e

Γ η
( ) = ( ; , ϑ ) =

ϑ ( )
.

η Q

η0 0 0 0
0
( −1) − /ϑ

0 0

0 0 0

0 (7)

For suitably chosen hyperparameters η0 and ϑ0, this prior can be
diffuse, with the support covering a large span of possible values of Q0.
Recall that the likelihood function θzℓ( | ) is a product of Poisson
distributions, which we can write in a slightly different form as:

∏θ z Q ρz rℓ( | ) = ( ; · ( ))
i

S

i ir
=1

0 0
(8)

where

ρ t R Qr r( ) = ( )/θi ir 0 00 (9)

is independent of Q0. This is a consequence of the dispersion model
being linear1 with respect to Q0.

Recall that the conjugate prior of the Poisson distribution is the
Gamma distribution [22]. Therefore, we can expect the posterior
p Q r z( | , )0 0 to be also a Gamma distribution, p Q Q ηr z( | , ) = ( ; , ϑ)0 0 0 ,
with parameters η and ϑ that can be calculated analytically as a
function of r0 and z. Note that the fact that the likelihood is a product of
Poisson distributions (rather than a single Poisson) does not change
the scheme, because one can think of this product as an arbitrary order
sequence of updates of the Gamma distributed random variable with
Poisson distributed measurements, which results in a sequence of
Gamma distributed random variables.

Proposition: The parameters η and ϑ of the posterior
p Q Q ηr z( | , ) = ( ; , ϑ)0 0 0 can be calculated as follows:

∑η η z= + ,
i

S

i0
=1 (10)

ρ r
ϑ = ϑ

1 + ϑ ∑ ( )
.

i
S

ir

0

0 =1 0 (11)

Proof. The proof is based on two properties of the Gamma
distribution: (i) If X η θ∼ ( , ) then for any constant c > 0,
cX η cθ∼ ( , ) [23]. (ii) If μ η θ( ; , ) is a prior distribution and n is a
sample from the Poisson distributed likelihood function with
parameter μ, then the posterior is [22] μ η n θ θ( ; + , /(1 + )).
Consider for simplicity only the first measurement, z1, collected at
position r1. The likelihood function θzℓ( | )1 is Poisson distributed with
mean μ Q ρ r= ( )r1 0 10 , where Q Q η∼ ( ; , ϑ )0 0 0 0 . According to Properties
(i) and (ii),

1 All commonly used dispersion/propagation models are linear with respect to Q0.
While in the paper we adopt the model from [14], the method is universal.
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