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Abstract

This paper proposes a projection matrix design algorithm using prior information on sparse signal to reduce local cumulative coher-
ence, since small local coherence can improve the sparse signal recovery rate. Local cumulative coherence describes the coherence
between the atoms indexed by the support of the sparse signal and other atoms. Using prior information on the sparse signal,
projection matrix design is formulated as an optimization problem that minimizes the weighted Frobenius distance between the
Gram matrix and the identity matrix. This optimization problem is solved by majorization-minimization method, which iteratively
minimizes the surrogate function. If the prior information is accurate, the designed projection matrix can make the local cumulative
coherence small. Numerical experiments on both synthesized signals and real image sequences demonstrate the effectiveness of the
proposed algorithm in improving the performance of sparse signal recovery algorithms such as greedy algorithms and basis pursuit
algorithm.
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1. Introduction

Compressive sensing aims to recover a high dimensional
sparse signal from its low dimensional linear projection mea-
surements [1]. Compressive sensing has been successfully
applied to channel estimation [2], direction of arrival (DOA)
estimation[3] and image denoising[4]. In compressive sensing,
let α be an l dimensional real signal. Its insufficient linear mea-
surement can be written as

y = Pα + e (1)

where P ∈ Rm×l is the projection matrix, y ∈ Rm×1 is the mea-
surement signal and e ∈ Rm×1 is the measurement noise. Here,
insufficient measurement means that the length of measurement
signal y, which is m, is less than that of signal α. This makes
the signal recovery problem an indefinite linear equation, which
has an infinite number of solutions.
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The crucial assumption in compressive sensing is that the
signal α can be sparsely represented by a redundant or non-
redundant basis, which can be written as

α = Dx (2)

where D ∈ Rl×n is called the sparsifying dictionary and x ∈
Rn×1 is a sparse representation of α. With (2) we denote that
signal α can be sparsely represented by matrix D and the repre-
sentation coefficient x is a sparse signal [5]. Here, sparse signal
means that the number of its nonzero components is far fewer
than the length of the signal itself [1].

The assumption that signal α can be sparsely represented is
reasonable, since many signals that we deal with are sparse
themselves or are sparse in some domains [6][7].

With (1) and (2), the measurement signal can be written as

y = PDx + e = Φx + e (3)

where Φ = PD. Φ is termed the equivalent measurement ma-
trix. In the following, we abbreviate the equivalent measure-
ment matrix as measurement dictionary.

With the assumption that x is sparse, the signal recovery can
be formulated as the following optimization problem:

min
x∈Rn×1

‖x‖0 s.t. ‖y −Φx‖2 ≤ σ (4)
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