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A B S T R A C T

Modelling signals as being periodic is common in many applications. Such periodic signals can be represented
by a weighted sum of sinusoids with frequencies being an integer multiple of the fundamental frequency. Due to
its widespread use, numerous methods have been proposed to estimate the fundamental frequency, and the
maximum likelihood (ML) estimator is the most accurate estimator in statistical terms. When the noise is
assumed to be white and Gaussian, the ML estimator is identical to the non-linear least squares (NLS)
estimator. Despite being optimal in a statistical sense, the NLS estimator has a high computational complexity.
In this paper, we propose an algorithm for lowering this complexity significantly by showing that the NLS
estimator can be computed efficiently by solving two Toeplitz-plus-Hankel systems of equations and by
exploiting the recursive-in-order matrix structures of these systems. Specifically, the proposed algorithm
reduces the time complexity to the same order as that of the popular harmonic summation method which is an
approximate NLS estimator. The performance of the proposed algorithm is assessed via Monte Carlo and timing
studies. These show that the proposed algorithm speeds up the evaluation of the NLS estimator by a factor of
50–100 for typical scenarios.

1. Introduction

Periodic signals are encountered in many real-world applications
such as music processing [1,2], speech processing [3,4], sonar [5],
order analysis [6], and electrocardiography (ECG) [7]. Such signals can
be modelled as a weighted sum of sinusoids whose frequencies are
integer multiples of a common fundamental frequency which in audio
and speech applications is often referred to as the pitch [2]. Therefore,
an important and fundamental problem in the above mentioned
applications is to estimate this fundamental frequency from an
observed data set. Multiple estimation methods have been proposed
in the scientific literature ranging from simple correlation-based
methods [8] to parametric methods [2]. Although the parametric
methods in general are much more accurate than the correlation-based
methods, they suffer from a high computational complexity.
Consequently, the correlation-based methods remain very popular
despite that they require all sorts of heuristic post-processing to give

a satisfactory performance [9–13]. Since many applications require
real-time processing, the computational complexity of the parametric
methods must be reduced to make them a viable alternative to the
correlation-based methods, and the contribution presented in this
paper should be seen in this context.

The main difficulty in estimating the fundamental frequency is that
a non-linear optimisation problem has to be solved. No closed-form
solution is available, and we, therefore, have to search for the global
optimiser of an often very oscillatory cost function such as the two
examples shown in Fig. 1. This search for the optimiser is often
performed using the following steps.

1. The cost function is evaluated on a grid and one or several candidate
optimisers are selected on this grid. Often, the grid is uniform since a
part of the cost function can then be evaluated efficiently using an
FFT algorithm.

2. The candidate optimisers are refined using, e.g., interpolation
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methods, line searches, or derivative-based methods.
3. For the parametric methods, model order estimation has to be

performed when the model is unknown to reduce the risk of
estimating an integer multiple or division of the true fundamental
frequency. Often, this problem is also referred to as pitch halving/
doubling or as octave errors. Estimating an unknown model often
means that we have to repeat the first two steps above for every
candidate model, thus increasing the computational complexity
significantly.

In the correlation-based methods, the cost function is the autocorrela-
tion function (or some variation thereof) which can typically be
computed very efficiently. Adding to this, the correlation-based meth-
ods are not model based so it is not necessary to do model comparison
to determine the number of harmonic components in the signal. From
a computational perspective, the correlation-based methods are, there-
fore, very attractive. Unfortunately, they have a suboptimal estimation
performance, are not very robust to noise (see, e.g., Fig. 3), and do not
work for low fundamental frequencies [14]. Here, a low frequency
means the number of cycles in a segment of data rather than the
frequency measured in, e.g., Hz or radians/s, and this also explains the
somewhat non-standard value on the x-axis in Fig. 1. The poor
performance for low fundamental frequencies is hardly surprising
since fewer and fewer data points are used in the computation of the
autocorrelation function as the candidate fundamental frequency
decreases. As exemplified by the very popular YIN method [11], this
is often solved by using data from the previous data segment, but this
trick corresponds to doubling the segment length and using a 50%
overlap. Thus, the correlation-based methods cannot provide the same
time-frequency resolution as those parametric methods which also
work for a low fundamental frequency.

The poor noise robustness and time-frequency resolution seem to
be fundamental flaws of the correlation-based methods and the main
reason for considering alternative estimators based on a parametric
model. Unfortunately, the evaluation of the cost function in the
parametric methods is often quite numerically costly since they can
involve eigenvalue decompositions of covariance matrices [15,16] or
matrix inversions [17,18]. A notable exception, though, is the harmonic
summation method (HS) [19,20] which is an approximate non-linear
least-squares (NLS) estimator and can be implemented efficiently using
a single FFT [2]. The HS summation estimator is statistically efficient
and robust to noise and is, therefore, a very attractive alternative to the
correlation-based methods. Unfortunately, the HS method also fails for
low fundamental frequencies and, therefore, suffers from a suboptimal
time-frequency resolution. This is in contrast to the NLS estimator [17]
which has a much better performance for low fundamental frequencies
and, consequently, a better time-frequency resolution [21], although at
a much higher computational complexity. In Fig. 1, the differences and
similarities between the HS and NLS cost functions are illustrated.
When more than approximately two periods or more are assumed to be

in a segment, the two cost functions are nearly the same whereas they
become more and more distinct for a decreasing fundamental fre-
quency. When the fundamental frequency is low and the data are real-
valued, an error is also made if estimators based on the complex-valued
harmonic model are used instead of estimators based on the real-
valued harmonic model. The error is introduced when the real-valued
signal is converted into an analytic signal (complex-valued) by use of
the Hilbert transform which ignores the interaction effects that occur
between positive and negative frequency components when the funda-
mental frequency is low. As demonstrated in [21], a much better
estimation accuracy is obtained for low fundamental frequencies if the
NLS estimators for the real-valued signal model is used instead of the
NLS estimator for the complex-valued one.

Although the NLS estimator has been known for at least 25 yr and
has some very attractive properties, which have been investigated
thoroughly in, e.g., [17,22,23,2,21,24], we are not aware of any fast
implementations of it. In fact, we believe that one of the main reasons
for the popularity of the HS method is that it shares many desirable
properties with the NLS method, but is much more computationally
efficient. In this paper, however, we show that the evaluation of the
NLS cost function can be reduced to the same order of time complexity
as that of the HS method. More precisely, we show that we can reduce
the cost of evaluating the NLS cost function on an F-point grid for all
candidate model orders l L= 1,…, from  F F FL( log ) + ( )3 to
 F F FL( log ) + ( ) which is the same as that for the HS method. In
addition to making each cost function evaluation as cheap as possible,
we also derive how the number of grid points F depends on the
segment length N and the maximum candidate model order L. This
result is important to ensure that we neither over- nor undersample the
cost function and can also be used to make the HS method faster.

The rest of this paper is organised as follows. In Section 2, we first
introduce the signal model, the ML estimator, the NLS cost function,
and the HS method. We also show how they are related to each other.
Then, the standard way of computing the NLS and HS cost functions
are described in Section 3. To speed up the computation of the NLS
cost function, we describe how the number of cost function evaluations
are minimised in Section 4 and how each cost function evaluation can
be made efficiently in Section 5. Finally, we investigate how fine the
cost function grid should be and quantify the computational savings
using Monte Carlo simulations in Section 6.

2. Signal model and NLS cost function

The real-valued signal model for a uniformly sampled and periodic
signal in additive noise e(n) is given by

∑x n a iω n b iω n e n( ) = [ cos( ) − sin( )] + ( )
i

l

i i
=1

0 0
(1)

where ai and bi are the linear weights of the i’th harmonic component
and ω0 is the fundamental frequency in radians per sample. If an N-

Fig. 1. Example of the exact NLS and harmonic summation cost functions. N=100, L=10, ω π N= 2 /0 , and constant amplitude a b i L+ = 1, = 1,…,i i
2 2 .
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