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A B S T R A C T

In this paper, a novel multivariate denoising scheme using multivariate empirical mode decomposition (MEMD)
is proposed. Unlike previous EMD-based denoising methods, the proposed scheme can align common frequency
modes across multiple channels of a multivariate data, thus, facilitating direct multichannel data denoising. The
key idea in this work is to extend our earlier MEMD based denoising method for univariate signal in Hao et al.
(2016) [19] to the multivariate data. The MEMD modes (known as intrinsic mode functions) for separating
noise components are first adaptively selected on the basis of a similarity measure between the probability
density function (pdf) of the input multivariate signal and that of each mode by Frobenius norm. The selected
modes are then denoised further by a local interval thesholding procedure followed by reconstruction of the
thresholded IMFs. The resulting method operates directly in multidimensional space where input signal resides,
owing to MEMD, and also benefits from its mode-alignment property. Furthermore, subspace projection is
introduced within the framework of the proposed method to exploit the inter-channel dependence among IMFs
with the same index, enabling the diversity reception of the signal. Performance of the proposed method against
standard multiscale denoising schemes is demonstrated on both synthetic and real world data.

1. Introduction

Real world data is often corrupted with unwanted noise which must
be removed before further signal processing. Existing denoising algo-
rithms, such as the least mean square (LMS) based Wiener and Kalman
filtering [1], multi-scale analysis based wavelet denoising [2] and the
newly developed empirical mode decomposition (EMD) method [3],
are mainly designed for univariate signals. However, with the devel-
opment of multichannel sensor technology, multivariate denoising is
urgently needed in many applications ranging from communication
system [4] to biomedicine [5].

Due to the fact that most of the signals are sparse in wavelet
domain, thresholding or shrinking based nonlinear operators are
employed in wavelet denoising [6] and it has been confirmed to be
very effective for practical 1D and 2D (image) signals. In order to
denoise multichannel signals jointly, a multivariate extension of
univariate wavelet denoising (MWD) method was presented in [7].
With a combination of p univariate wavelet denoising and principal
component analysis (PCA) performed on the signal after decorrelating
the noise among channels, MWD method achieves better performance
than traditional channel-wise wavelet denoising. Recently, synchros-
queezing transform (SST) has been introduced to the wavelet denoising

and it has been confirmed that it can outperform a state-of-the-art
methods based on wavelets for the signals with weak frequency
modulation [8]. Consequently, multivariate wavelet synchrosqueezing
denoising (MWSD) was proposed in [9] which employs the threshold-
ing technique for the multivariate oscillatory framework.

EMD is a fully data-driven time-frequency analysis method, which
has been widely applied to analyze nonlinear and nonstationary signals
[10]. Unlike standard approaches such as Fourier and wavelet trans-
form that project input data onto predefined and fixed basis functions,
EMD decomposes an arbitrary signal into a complete and finite set of
localized amplitude/frequency modulated (AM/FM) oscillations de-
rived from the signal itself, which are called intrinsic mode functions
(IMFs). Based on the above properties, EMD based denoising methods
have been shown to outperform the wavelet based ones [11].

Specifically, for the purpose of signal denoising, the following EMD
based approaches have emerged recently: direct thresholding EMD
(EMD-DT) methods which have been inspired by the wavelet theshold-
ing proposed by Donoho [6]. In this method, the filtered signal is
obtained by thresholding the IMFs directly before signal reconstruction
[12]. To be consistent with the characteristics of the IMF, interval
thresholding was presented in [11] and was shown to outperform
EMD-DT. In [13], partial reconstruction of IMFs was used to perform
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signal denoising. However, it also raises the question on how to select
relevant modes (IMFs) within the framework of EMD. When EMD is
applied to a noisy signal, it is necessary to determine whether the
resulting IMF belongs to noise or signal. Correlation-based threshold-
ing was adopted to choose the relevant IMFs in [14,15], respectively.
But for a noisy signal with different signal-to-noise ratio (SNR), both
these methods have been found to be unstable, owing to strong or weak
correlation between the noisy signal and the first IMF. To avoid this
shortcoming, a more robust method using similarity measure between
the probability density function (pdf) of the input signal and that of
each IMF was presented in [16].

However, the problem of uniqueness within univariate EMD still
leads to a serious obstacle: there is no guarantee that the same-index
IMFs from multiple channels carry the information pertaining to the
same scale to facilitate the analysis of multichannel signals [17].
Moreover, standard EMD may suffer from mode-mixing and spectral
aliasing for intermittent data [18]. Mode-mixing, whereby either an
IMF contains different oscillatory modes or one mode is appeared in
different IMFs, makes it hard to obtain a clean signal via partial
reconstruction. The performance of thresholding methods depends on
an accurate estimate of noise energy, and thus they are also limited by
spectral aliasing.

To resolve this issue, we have proposed to use a recent multivariate
extension of EMD, namely multivariate empirical mode decomposition
(MEMD), to analyze univariate data and thus circumvent the problem
of uniqueness in [19]. However, the denoising method in [19] is limited
to the univariate signal under Gaussian noise. In this paper, we propose
a novel MEMD based denoising method for multichannel data. The
method is a nontrivial extension of [19] for multivariate data owing to
the fact that we employ subspace projection scheme in conjunction
with MEMD for improved denoising performance. Furthermore, a new
mechanism for the estimation of the pdfs of multivariate data has been
employed in this work, which is fundamentally different from the
univariate pdf estimation used in [19]. The proposed scheme operates
by decomposing a multivariate data via noise-assisted MEMD [20],
followed by an estimation of the pdf of each extracted joint rotational
mode. Interval thresholding and partial reconstruction are next applied
to denoise the IMFs based on the value of a similarity measure between
the pdf of the input signal and that of each mode via Frobenius norm.
Moreover, subspace projection is adopted to denoise multivariate
signals further by utilizing the channel diversity. To illustrate the
effectiveness of the proposed scheme, simulations on both synthetic
and real world signals are conducted to support the analysis.

The organization of this paper is as follows. Section 2 provides a
brief description of MEMD. Section 3 addresses the MEMD based
multivariate denoising and Section 4 describes MEMD combined with
subspace projection based multivariate denoising. Section 5 validate
the performance of the proposed algorithm through simulations, and
the final conclusions are drawn in Section 6.

2. Multivariate empirical mode decomposition

Standard univariate EMD is only applicable to univariate or single-
channel input data and divides it into a combination of oscillatory
modes. MEMD has been recently developed to process a general class
of multivariate signals having an arbitrary number of channels. MEMD
extends the notion of extracting “oscillations” in univariate EMD to
extracting “rotations” in multidimensional space [21].

For an n-variate signal (containing n number of channels) the local
mean cannot be defined directly, and thus MEMD takes multiple
projections of the input signal along uniformly sampled directions
based on a low discrepancy Hammersley sequence. Once the projec-
tions in multidimensional space are obtained, the local mean of the
multivariate signal can be calculated by averaging all the envelopes
along the sampled directions in (n-1)-dimensional space. To utilize the
benefits of quasi-dyadic filter bank structure of MEMD on white

Gaussian noise (WGN), l-channel independent white noise is added
to n-channel multivariate data to create an (n+l)-dimensional “compo-
site” space, and then process such a composite signal via MEMD,
namely noise-assisted MEMD method [22]. Since the added noise
channels have a broad range in the frequency spectrum, MEMD aligns
the IMFs corresponding to the input signals according to the structure
of the dyadic filter bank, which also helps to reduce mode-mixing
within the extracted IMFs. Algorithm 1 lists the steps involved in the
MEMD algorithm.

Fractional Gaussian noise (fGn) is a general case of white Gaussian
noise and is found to be very efficient to describe the long-range
dependence of noise via Hurst exponent H. For the special case H=0.5,
fGn reduces to the white Gaussian noise. Both EMD and MEMD have
exhibited excellent filter bank properties for fGn in statistic in [23,24].
However, we are more concerned about the decomposition result for
only a single realization from the perspective of practical application.
As the dyadic filter bank property of MEMD for fGn is not sensitive to
the Hurst of the assisted fGn [24], thus for the univariate fGn process
of length N=1000, MEMD is applied with two WGN channels and EMD
is applied directly. The frequency response and the corresponding filter
bank property are illustrated based on a single realization of an
univariate fGn in Fig. 1. It can be observed that the IMFs obtained
from MEMD exhibit a better quasi-dyadic filter bank structure than
EMD, irrespective of Hurst exponent H. The alignment of IMFs with
MEMD results in more stable individual spectra and thus leads to a
better estimation of noise-only IMF energy, which is very important for
the thresholding process.

Fig. 1. Spectra of IMF1-IMF9 obtained from a single realization of an univariate fGn
decomposed via (a) EMD and (b) MEMD.
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